
2020-Dec-6, 15:01IMaEA

Page 1 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

Image Metadata
and

Exiv2 Architecture
Robin Mills
2020-12-05

2020-Dec-6, 15:01IMaEA

Page 2 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

I want to say Thank You to a few folks who have made this book possbile.

First, my wife Alison, who has been my loyal support since the day we met in High School in 1967.

Secondly, Andreas Huggel the founder of the project and Luis and Dan who have worked tirelessly with me since 2017.

Exiv2 contributors (in alphabetical order): Abhinav, Alan, Andreas (both of them), Arnold, Ben, Gilles, Kevin, Leo,
Leonardo, Mahesh, Michał, Mikayel, Miloš, Nehal, Neils, Phil, Rosen, Sridhar, Thomas, Tuan …. and others who have
contributed to Exiv2.

File Detectives: Phil Harvey, Dave Coffin, Laurent Clévy.

And our cat Lizzie.

Dedication and Acknowledgment

2020-Dec-6, 15:01IMaEA

Page 3 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

TOC

2020-Dec-6, 15:01IMaEA

Page 4 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

Section Page Image Formats Page
Project
Management

Page

1. Image File Formats 9 TIFF and BigTiff 10
11. Project
Management

77

2. Metadata Standards 32 JPEG and EXV 12 11.1 C++ Code 78

2.1 Exif Metadata 35
PNG Portable Network
Graphics

17 11.2 Build 79

2.2 XMP Metadata 36 JP2 Jpeg 2000 18 11.3 Security 80

2.3 IPTC/IMM
Metadata

37
ISOBMFF, CR3, HEIF,
AVIF

19 11.4 Documentation 80

2.4 ICC Profile 37 CRW Canon Raw 20 11.5 Testing 80

2.5 MakerNotes 38
RIFF Resource I'change
File Fmt

20 11.6 Samples 80

2.6 Metadata
Convertors

38 MRW Minolta Raw 21 11.7 Users 80

3. Reading Metadata
ORF Olympus Raw
Format

22 11.8 Bugs 80

3.1 Read metadata with
dd

PEF Pentax Raw 11.9 Releases

3.2 Tags and TagNames
PGF Progressive
Graphics File

11.10 Platforms

3.3 Visitor Design
Pattern

PSD PhotoShop
Document 11.11 Localisation

3.4 IFD::accept() RAF Fujifilm RAW 11.12 Build Server

3.5
ReportVisitor::visitTag()

RW2 Panasonic RAW 11.11 Source Code

3.6 Jpeg::Image accept() TGA Truevision Targa 11.14 Web Site

BMP Windows Bitmap 11.15 Servers

4. Lens Recognition
GIF Graphical
Interchange Format

11.16 API

5. I/O in Exiv2 SIDECAR Xmp Sidecars 11.17 Contributors

TABLE of CONTENTS

file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html%23Convertors

2020-Dec-6, 15:01IMaEA

Page 5 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

6. Image Previews 38 22 11.18 Scheduling 80

39 23 11.19 Enhancements 81

41 24 11.20 Tools 81

41 25 11.21 Licensing 81

7. Exiv2 Architecture 42 26 11.22 Back-porting 81

7.1 API Overview 44 27 11.23 Partners 81

7.2 Typical Sample
Application

44 28 11.24 Development 81

7.3 The EasyAccess API 48 29 81

7.4 Listing the API 53 30 81

7.5 Function Selectors 57 81

7.6 Tags in Exiv2 59 81

7.7 Tag Decoder 61 82

7.8 TiffVisitor 63

7.9 Other Exiv2 Classes 63 Other Sections 82

8. Test Suite 63 Dedication 2 82

8.1 Bash Tests 68 About this book 4 82

8.2 Python Tests 69
How did I get
interested ?

4 82

8.3 Unit Tests 70 2012 - 2017 5 82

8.4 Version Test 71 2017 - Present 5

8.5 Generating HUGE
images

73 Current Priorities 6

9. API/ABI
Compatibility

74 Future Projects 6

10. Security 75 Scope of Book 7
12. Code discussed
in this book

110

10.2 The Fuzzing Police 80 Making this book 8 The Last Word 111

2020-Dec-6, 15:01IMaEA

Page 6 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

This book is about Image Metadata and Exiv2 Architecture.

Image Metadata is the information stored in a digital image in addition to the image itself. Data such as the
camera model, date, time, location and camera settings are stored. To my knowledge, no book has been written
about this important technology.

Exiv2 Architecture is about the Exiv2 library and command-line application which implements cross-platform
code in C++ to read, modify, insert and delete items of metadata. I’ve been working on this code since 2008
and, as I approach my 70th birthday, would like to document my knowledge in the hope that the code will be
maintained and developed by others in future.

At the moment, the book is work in progress and expected to be finished by the end of 2020. Exiv2 v0.27.3
shipped on schedule on 2020-06-30 and I feel the text and the code discussed in this book are good enough to
be released in its current state.

TOC

I first became interested in metadata because of a trail conversation with Dennis Connor in 2008. Dennis and I
ran frequently together in Silicon Valley and Dennis was a Software Development Manager in a company that
made GPS systems for Precision Agriculture. I had a Garmin Forerunner 201 Watch. We realised that we could
extract the GPS data from the watch in GPX format, then merge the position into photos. Today this is called
“GeoTagging” and is supported by many applications.

About this book

How did I get interested in this matter?

2020-Dec-6, 15:01IMaEA

Page 7 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

I said “Oh, it can’t be too difficult to do that!”. And here we are more than a decade later still working on the
project. The program geotag.py was completed in about 6 weeks. Most of the effort went into porting Exiv2
and pyexiv2 to Visual Studio and macOS. Both Exiv2 and pyexiv2 were Linux only at that time.

The program samples/geotag.cpp is a command line utility to geotag photos and I frequently use this on my
own photographs. Today, I have a Samsung Galaxy Watch which uploads runs to Strava. I download the GPX
from Strava. The date/time information in the JPG is the key to search for the position data. The GPS tags are
created and saved in the image.

In 2008, I chose to implement this in python because I wanted to learn the language. Having discovered exiv2
and the python wrapper pyexiv2, I set off with enthusiasm to build a cross-platform script to run on Windows
(XP, Visual Studio 2003), Ubuntu Linux (Hardy Heron 2008.04 LTS) and macOS (32 bit Tiger 10.4 on a big-endian
PPC). After I finished, I emailed Andreas. He responded in less than an hour and invited me to join Team
Exiv2. Initialially, I provided support to build Exiv2 with Visual Studio.

Incidentally, later in 2008, Dennis offered me a contract to port his company’s Linux code to Visual Studio to be

2020-Dec-6, 15:01IMaEA

Page 8 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

used on a Windows CE Embedded Controller. 1 million lines of C++ were ported from Linux in 6 weeks. I
worked with Dennis for 4 years on all manner of GPS related software development.

https://clanmills.com/articles/gpsexiftags/

I have never been employed to work on Metadata. I was a Senior Computer Scientist at Adobe for more than
10 years, however I was never involved with XMP or Metadata.

TOC

By 2012, Andreas was losing interest in Exiv2. Like all folks, he has many matters which deserve his time. A
family, a business, biking and other pursuits. From 2012 until 2017, I supported Exiv2 mostly alone. I had lots
of encouragement from Alan and other occasional contributors. Neils did great work on lens recognition and
compatibility with ExifTool. Ben helped greatly with WebP support and managed the transition of the code
from SVN to GitHub. Phil (of ExifTool fame) has always been very supportive and helpful.

I must also mention our adventures with Google Summer of Code and our students Abhinav, Tuan and
Mahesh. GSoC is a program at Google to sponsor students to contribute to open source projects. 1200 Students
from around the world are given a bounty of $5000 to contribute 500 hours to a project during summer recess.
The projects are supervised by a mentor. Exiv2 is considered to be part of the KDE family of projects. Within
KDE, there is a sub-group of Graphics Applications and Technology. We advertised our projects, the students
wrote proposals and some were accepted by Google on the Recommendation of the KDE/Graphics group.

In 2012, Abhinav joined us and contributed the Video read code and was mentored by Andreas. In 2013, Tuan
joined us and contributed the WebReady code and was mentored by me. Mahesh also joined us to contribute
the Video write code and was mentored by Abhinav.

I personally found working with the students to be enjoyable and interesting. I retired from work in 2014 and
returned to England after 15 years in Silicon Valley. In 2016, Alison and I had a trip round the world and spent
a day with Mahesh in Bangalore and with Tuan in Singapore. We were invited to stay with Andreas and his
family. We subsequently went to Vietnam to attend Tuan’s wedding in 2017.

TOC

After v0.26 was released in 2017, Luis and Dan started making contributions. They have made many
important contributions in the areas of security, test and build. In 2019, Kevin joined us. He discovered and
fixed some security issues.

The current release of Exiv2 is v0.27.3 and shipped on 2020-06-30. I hope v0.28 will be released in 2021. Further
“dot” releases of v0.27 may be published for security fixes in future.

The Libre Graphics Meeting was scheduled to take place in May 2020 in Rennes, France. I intended to conduct
a workshop on Image Metadata and Exiv2 Architecture. This book was being written to be used in that
presentation. Regretfully, the Covid-19 crisis caused the postponement of LGM.

2012 - 2017

2017 - Present (2021)

https://clanmills.com/articles/gpsexiftags/

2020-Dec-6, 15:01IMaEA

Page 9 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

I started working on Exiv2 to implement GeoTagging. As the years have passed, I’ve explored most of the
code. I’ve added new capability such as support for ICC profiles, metadata-piping and file-debugging. I’ve
done lots of work on the build, test suite and documentation. I’ve talked to users all over the world and closed
several hundred issues and feature requests. Over the years, I’ve met users in India, Singapore, Armenia, the
USA and the UK. I’ve attended 2 Open-Source Conferences. It’s been an adventure and mostly rewarding. It’s
remarkable how seldom users express appreciation.

TOC

In July 2017 we received our first security CVE. Not a pleasant experience. The security folks started hitting us
with fuzzed files. These are files which violate format specifications and can cause the code to crash. We
responded with v0.27 which will have regular “dot” releases to provide security fixes. Managing frequent
releases and user correspondence consumes lots of my time.

In parallel with “the dots”, major work is being carried to prepare Exiv2 for the future. Luis, Dan and Rosen
are working on v0.28 which will be released in 2021. This is a considerable reworking of the code into C++11.

I’m delighted by the work done by Dan, Luis and Kevin to deal with the assault of the security people. I
believe we are responding effectively to security issues. None-the-less, they have dominated the development
of Exiv2 for at least two years and many ideas could not be pursued because security consumed our
engineering resources.

TOC

The code is in good shape, our release process is solid and we have comprehensive user documentation. As
photography develops, there will be many new cameras and more image formats such as CR3, HEIF and
BigTiff. Exiv2 Video support is weak and was deprecated in v0.27. It will be removed in 0.28. One day a
contributor will re-engineer the video code.

A long standing project for Exiv2 is a unified metadata container. There is an implementation of this in the
SVN repository. Currently we have three containers for Exif, Iptc and Xmp. This is clumsy. We also have a
restriction of one image per file. Perhaps both restrictions have a common solution.

The toolset used in Software Engineering evolves with time. C++ has been around for about 35 years and,
while many complain about it, I expect it will out-live most of us. None-the-less, languages which are less
vulnerable to security issues may lead the project to a re-write in a new language such as Rust. I hope this
book provides the necessary understanding of metadata to support such an undertaking.

The most common issue raised by users concerns lens recognition. For v0.26, I added the Configuration File
feature to enable users to modify lens recognition on their computer. While this is helpful, many users would
like Exiv2 to deal with this perfectly, both now and in the future.

I intended to make a proposal at LGM in Rennes in May 2020 concerning this matter. Both Exiv2 and ExifTool
can extract metadata from an image into a .EXV file. I would propose to implement a program to read the

Current Development Priorities

Future Development Projects

2020-Dec-6, 15:01IMaEA

Page 10 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

.EXV and return the Lens. That program will have an embedded programming language with the rules to
identify the lens. The scripts will be ascii files which can be updated. It will be called M2Lscript (MetaData to
Lens Script), pronounced “MillsScript”. The M2Lscript interpreter will be available as a command-line
program, a perl module (for ExifTool), a C++ library (for linking into exiv2) and perhaps a python module.

In this way, new lens definitions can be written in M2Lscript without touching anything in Exiv2 or ExifTool.

I will not be able to work on both Exiv2 and M2Lscript simulateously. When a new maintainer takes
responsibility for Exiv2, I will retire. M2Lscript would be my swansong technology project. However, the C-19
crisis postponed LGM in 2020. I don’t have the energy to continue with open-source. This book is my final
contribution.

TOC

This book is my gift and legacy to Exiv2. I hope Exiv2 will continue to exist long into the future. This book is
being written to document my discoveries about Image Metadata and Exiv2 Architecture. However, I want to
avoid a cut'n'paste of information already in the project documentation. This book is an effort to collect my
knowledge of this code into a single volume. Many topics in this book are discussed in more detail in the issue
history stored in Redmine and GitHub. I hope this book helps future maintainers to understand Exiv2, solve
issues and develop the code for years to come.

I wish you a happy adventure in the world of Image Metadata. If you’d like to discuss matters concerning this
book, please open an issue on GitHub and share your thoughts with Team Exiv2.

This book is copyright and licensed under GNU GPLv2. https://www.gnu.org/licenses/old-licenses/gpl-
2.0.html

Attention is drawn to the possibility that some elements of this document may be the subject of patent rights.
Robin Mills and/or the Exiv2 Project and/or the Exiv2 Contributors shall not be held responsible for
identifying any or all such patent rights.

TOC

I’ve had a lot of fun making this book. Most of the time was spent on the code, however getting the book into
good shape for the web and print has been fun. The graphics were drawn using OmniGraffle 6.6.2 on my
MacBook Pro.

All the documentation for Exiv2 is written in markdown with the exception of the Unix man page exiv2.1 I
find markdown easy to use and quickly produces satisfying results.

The book is written in markdown and displayed on my computer with the MacDown Application. When
MacDown exports a PDF, he ignores print directives in the style sheet, he does not support page numbering
and the links are ineffective. To my taste, the text size of pages is too large when printed on A4.

Purpose and Scope of this book

Disclaimer

Making this book

https://www.gnu.org/licenses/old-licenses/gpl-2.0.html

2020-Dec-6, 15:01IMaEA

Page 11 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

I used a modified version of this style sheet: ~/Library/Application Support/MacDown/Styles/GitHub2.css.
I changed the fonts to be Helvetica in the titles and Palatino in the body. I thought about using the Exiv2 logo
font which is Albertus Medium. I decided to adopt the ubiquitous Palatino. Code is set in Consolas in both the
graphics and the in-line code snippets in the text.

I get MacDown to export HTML to IMaEA.html. I open IMaEA.html in Safari and print it into a PDF file with a
page size of 275x389mm. This preserves the aspect ratio √2/1 of ISO-Standard pages. Safari has a option to add
page number and date to every page. I get Safari to save the print in PDF (it’s 275x388). The printing system on
macOS has a Paper Handling feature to scale the print to fit a page size and I set that to A4. I save the PDF
from the print system and the result is a beautiful A4 document with all the links working and scaled to fit A4.

I have to manually update the page numbers in the table of contents. If Exiv2 ever supports PDF, I’ll probably
be able to script that! I only do that when I intend to publish the file as it’s tedious.

The final step is to take the PDF to the local print shop to be printed and bound.

Incidentally, I investigated adding a clickable Exiv2 logo to every page of the PDF and found this very useful
open-source program pdfstamp: url = https://github.com/CrossRef/pdfstamp.git

PDF documents work in point sizes (72/inch) so A4 pages 297x210mm = 842x596pt. The origin is in the lower
left.

We could use this to add page labels (date/time/title) to every page (except the front page).

I also investigated doing this in the style-sheet. I tried Safari, Chrome and Firefox with varying success. Then I
read this: https://www.smashingmagazine.com/2015/01/designing-for-print-with-css/.

The prince product fully supports HTML->PDF with @media print in the style sheet and works really well.
They offer a free/unrestricted license for non-commercial use.

https://www.princexml.com

I tried prince and was very pleased with the result. When you ask prince to create the PDF, you can specify
page-size and style sheet. I’ve set up IMaEA.css with the builtin page size of 275x389.

The date that appears at the center-bottom of every page (except the first) is in the style sheet. You could
change that with sed of course. Setting the date from the computer clock would be fine for an automatic
reporting application. Better to use static text as we might want to say “Exiv2 v0.27.3 2020-06-30” or the like.

@media print {
 h1,h2 { page-break-before: always; }
 h3,h4 { page-break-after: never; }
}

1
2
3
4

$ java -jar pdfstamp.jar -v -i ~/gnu/exiv2/team/book/exiv2.png -l 30,30 -u https://exiv2.org -pp 2-74 ~/clanmills/exiv2/book/IMaEA.pdf -o
$ java -jar pdfstamp.jar -v -d 8000 -i ~/gnu/exiv2/team/book/exiv2-large.png -l 550,30 -u https://exiv2.org -pp 2-75 ~/clanmills/exiv2/book/IMaEA.pdf -o

1
2

$ prince --page-size='275mm 389mm' --style ~/gnu/exiv2/team/book/pdf-styles.css IMaEA.html
$ prince --type IMaEA.css IMaEA.html

1
2

Bash

Bash

Bash

https://github.com/CrossRef/pdfstamp.git
https://www.smashingmagazine.com/2015/01/designing-for-print-with-css/
https://www.princexml.com/

2020-Dec-6, 15:01IMaEA

Page 12 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

The resulting PDF is beautiful and not watermarked by prince, although they put a postit on the front page.
That’s OK. They deserve credit for their outstanding work and free license.

However, prince rendered the code snippets as plain pre-formatted text and didn’t provide the beautiful
formatting and syntax colouring provide by MacDown and which is printed in the PDF generated by Safari.

So, I decided that the Safari/PDF was the best PDF and I tweaked the PDF in three ways using SodaPDF. I
fixed the title and dates on every page. I fixed the “goto page#” PDF links which were mysteriously off by one
page, and I added a PDF Table of Contents. The result is a beautiful document which looks great on the tablet
(in HTML or PDF), great on the computer and beautiful when printed.

Thank You for reading my book. If you find errors, please let me know. If you’d like to discuss any of the
technology involved in Image Metadata, please contact me by opening an issue on GitHub.
https://github.com/exiv2/exiv2

TOC

https://github.com/exiv2/exiv2

2020-Dec-6, 15:01IMaEA

Page 13 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

The following summaries of the file formats are provided to help you to understand both this book and the
Exiv2 code. The Standard Specifications should be consulted for more detail.

I’ve made a summary of every file format supported by Exiv2 and hope you find that useful. There are an
absurd number of Graphics File Formats. I have a copy somewhere of the O'Reilly book. I got it in 1996 and it
has 1000+ pages. Since then there have been many more invented. It’s a software mess. In the early days, many
formats were local to a few users in a University and escaped to a wider audience. However the never ending
stream of new standards is horrible. Canon have several different RAW formats such as CRW, CR2 and CR3.

A good model for an image is to think of it as a container. It’s like a directory on the disk. The directory can
hold files with different formats and the directory is recursive as it can contain a directory of more files.
Almost every graphics format since TIFF in 1992 is a container.

The good news however is that file formats come in families which are:

Family Description Examples

TIFF
You must learn Tiff thoroughly to understand
metadata

TIFF, DNG, NEF, ICC, CR2, ORF,
RAW, DCP,PEF

JIFF
JPEG Image File Format
Linked list of 64k segments

JPEG, EXV

PNG
Another popular format
Linked list of chunks

PNG

CIFF
Camera Image File Format. Dave Coffin parse.c
decodes CRW

CRW

ISOBMFF Based on the .mp4 format MP4, CR3, AVI, HEIF, JP2

RIFF Resource Interchange File Format WEBP, AVI

GIF Graphics Image Format GIF

BMP
Windows BMP never has XMP, IPTC or Exif
metadata.
Version5 may include an ICC profile.

BMP

EPS
Adobe Encapsulated PostScript
The code in Exiv2 to deal with this is deprecated

EPS, AI

The Metadata is defined by standards which also define how to embed the data in the image.

1 Image File Formats

2020-Dec-6, 15:01IMaEA

Page 14 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

Standard Description

Exif
EXchangeable Image Format.
This is encoded as a TIFF sub-file

IPTC International Press Telecommunications Council

ICC
Internation Colour Consortium
The ICC Profile is similar to TIFF
The ICC Profile is an ICC sub-file.

XMP Adobe XMP is encoded as an XML sub-file

I suspect the proliferation of formats is caused by the hardware engineers. When hardware people start a new
project, they copy the CAD files from the last project and proceed from there. They don’t worry about back-
porting changes or compatibility. We have to live with this mess.

There is also the issue of patents. It’s unclear if it’s legal to read an ISOBMFF file which is used by Apple to
store Heif files. I believe it is legal to read ISOBMFF files. It’s illegal to reverse engineer the proprietary
encoded data stored in the mdat box a HEIF. Metadata is occasionally compressed (PNG), encrypted (Nikon)
or ciphered (Sony).

Here is a useful WikiPedia site that summarises file formats:
https://en.wikipedia.org/wiki/Comparison_of_graphics_file_formats

TOC

https://en.wikipedia.org/wiki/Comparison_of_graphics_file_formats

2020-Dec-6, 15:01IMaEA

Page 15 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

The architecture of TIFF and BigTiff are the same. BigTiff is 64 bit based. So most uint16_t data types become
uint32_t and uint32_t become uint64_t. BigTiff has three additional 8 byte types: Long8, SLong8 and Ifd8.

For both TIFF and BigTiff, the magic header is MM (Motorola) for big-endian and II (Intel) for little-endian,
followed by a 2-byte integer which must be 42 (ascii *) for Tiff and 43 (ascii +) for BigTiff. These markers are
very obvious MM_+ or II*_ when formatted by dmpf.cpp

Both tag and type are uint16_t in TIFF and BigTiff.

The header for TIFF is 8 bytes. It is the magic header followed by a long offset to the first IFD. The header for
BigTiff is 16 bytes. It is the magic header followed by 2 shorts (which must be 8,0) and a long8 offset to the first
IFD.

Tagged Image File Format

2020-Dec-6, 15:01IMaEA

Page 16 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

Element TIFF BigTiff Element TIFF BigTiff

Header XX*_Long XX+_ 8 0 Long8 Header 8 bytes 16 bytes

Marker * 0x2a = 42 + 0x2b = 43 Offset uint32_t uint64_t

Tag uint16_t uint16_t Entry 12 bytes 20 bytes

Type uint16_t uint16_t Entries #E uint16_t uint64_t

Count uint32_t uint64_t Next uint32_t uint64_t

It’s important to understand that Endian can change as we descend into the file. There are images in which
there are sub-files whose endian setting is different from the container.

These are defined in the following tags:

These are tiff files. There must be some subtle matters to be handled in these formats, however tvisitor has no
trouble running over the files. Allow me to quote directly from Adobe’s document:
https://wwwimages2.adobe.com/content/dam/acom/en/products/photoshop/pdfs/dngspec1.5.0.0.pdf

A Standard Format

The lack of a standard format for camera raw files creates additional work for camera manufacturers because they need to
develop proprietary formats along with the software to process them. It also poses risks for end users. Camera raw formats
vary from camera to camera, even those produced by the same manufacturer. It is not uncommon for a camera
manufacturer to terminate support for a discontinued camera’s raw format. This means users have no guarantee they will
be able to open archived camera raw files in the future.

To address these problems, Adobe has defined a new non-proprietary format for camera raw files. The format, called
Digital Negative or DNG, can be used by a wide range of hardware and software developers to provide a more flexible raw
processing and archiving workflow. End users may also use DNG as an intermediate format for storing images that were
originally captured using a proprietary camera raw format.

TIFF Compatible

DNG is an extension of the TIFF 6.0 format, and is compatible with the TIFF-EP standard. It is possible (but not
required) for a DNG file to simultaneously comply with both the Digital Negative specification and the TIFF-EP
standard.

XMP and ICC Profiles in Tiff

$ taglist ALL | grep -e ^Image\.InterColorProfile -e ^Image.XMLPacket | csv -
[Image.XMLPacket] [700] [0x02bc] [Image] [Exif.Image.XMLPacket] [Byte] [XMP Metadata
[Image.InterColorProfile] [34675] [0x8773] [Image] [Exif.Image.InterColorProfile]
693 rmills@rmillsmm-local:~/gnu/exiv2/team/book $
$

1
2
3
4
5

NEF, DNG and CR2

Bash

file:///Users/rmills/gnu/exiv2/team/book/dng_spec_1.5.0.0.pdf

2020-Dec-6, 15:01IMaEA

Page 17 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

I downloaded and installed Adobe’s DNG Convertor and applied it to some NEF files from my Nikon D5300:

I was a little surprised that Adobe have removed the MakerNote.

I believe the “undefined” tags which are listed in the format: Exif.Image.0xc761 and defined in the
specification. C761.H is “Noise Profile” for which the mathematics are explained by Adobe!

It’s possible that there are tags which are unique to CR2 and NEF and tvisitor.cpp is hiding them when the U
option is not being used. In the first instance, I can search in the Exiv2 source code to see if there is any special
or unusual being defined or used by the CR2 and NEF handlers.

.../book/build $./tvisitor -pU /Users/rmills/temp/Raw/DSC_0003.dng
STRUCTURE OF TIFF FILE (II): /Users/rmills/temp/Raw/DSC_0003.dng
 address | tag | type | count | offset | value
 10 | 0x00fe Exif.Image.NewSubfileType | LONG | 1 | | 1
 22 | 0x0100 Exif.Image.ImageWidth | LONG | 1 | | 256
 34 | 0x0101 Exif.Image.ImageLength | LONG | 1 | | 171
 46 | 0x0102 Exif.Image.BitsPerSample | SHORT | 3 | 734 | 8 8 8
 58 | 0x0103 Exif.Image.Compression | SHORT | 1 | | 1
 70 | 0x0106 Exif.Image.PhotometricInte.. | SHORT | 1 | | 2
 82 | 0x010f Exif.Image.Make | ASCII | 18 | 740 | NIKON CORPORATION
 94 | 0x0110 Exif.Image.Model | ASCII | 12 | 758 | NIKON D5300
 106 | 0x0111 Exif.Image.StripOffsets | LONG | 1 | | 286218
 118 | 0x0112 Exif.Image.Orientation | SHORT | 1 | | 1
 130 | 0x0115 Exif.Image.SamplesPerPixel | SHORT | 1 | | 3
 142 | 0x0116 Exif.Image.RowsPerStrip | LONG | 1 | | 171
 154 | 0x0117 Exif.Image.StripByteCounts | LONG | 1 | | 131328
 166 | 0x011c Exif.Image.PlanarConfigura.. | SHORT | 1 | | 1
 178 | 0x0131 Exif.Image.Software | ASCII | 37 | 770 | Adobe DNG Converter 12.3
 190 | 0x0132 Exif.Image.DateTime | ASCII | 20 | 808 | 2020:07:13 14:53:56
 202 | 0x014a Exif.Image.SubIFD | LONG | 2 | 828 | 280022 285140
 STRUCTURE OF TIFF FILE (II): /Users/rmills/temp/Raw/DSC_0003.dng
 address | tag | type | count | offset | value
 280024 | 0x00fe Exif.Image.NewSubfileType | LONG | 1 | | 0
 280036 | 0x0100 Exif.Image.ImageWidth | LONG | 1 | | 6016
 280048 | 0x0101 Exif.Image.ImageLength | LONG | 1 | | 4016
 280060 | 0x0102 Exif.Image.BitsPerSample | SHORT | 1 | | 16
 280072 | 0x0103 Exif.Image.Compression | SHORT | 1 | | 7
 280084 | 0x0106 Exif.Image.PhotometricInte.. | SHORT | 1 | | 32803
 280096 | 0x0115 Exif.Image.SamplesPerPixel | SHORT | 1 | | 1
 280108 | 0x011c Exif.Image.PlanarConfigura.. | SHORT | 1 | | 1
 280120 | 0x0142 Exif.Image.0x142 | LONG | 1 | | 256
 280132 | 0x0143 Exif.Image.0x143 | LONG | 1 | | 256
...
 280348 | 0xc761 Exif.Image.0xc761 | DOUBLE | 6 | 285092 | 4549338546106269780 4516671190936266 +++
 END: /Users/rmills/temp/Raw/DSC_0003.dng
...
 706 | 0xc761 Exif.Image.0xc761 | DOUBLE | 6 | 279958 | 4549338546106269780 4516671190936266 +++
 718 | 0xc7a7 Exif.Image.0xc7a7 | UBYTE | 16 | 280006 | 51 35 79 139 126 151 164 251 56 72 2 +++
END: /Users/rmills/temp/Raw/DSC_0003.dng

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

CR2 and NEF will require more investigation.

Bash

2020-Dec-6, 15:01IMaEA

Page 18 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

There is a significant problem with the Tiff format. It’s possible for binary records to hold offsets to significant
data elsewhere in the file. This creates two problems. Firstly, when buried in an undocumented MakerNote,
we don’t know that the data is an offset. So, when all the blocks move in a rewrite of the file, we can neither
relocate the referenced data, nor update the offset. My conclusion is that is almost impossible to garbage
collect a tiff file. However, the situation isn’t hopeless. The offset in the Tiff Header defines the location of
IFD0. It’s very common that IFD0 is at the end of the file and the reason is obvious. When a Tiff is rewritten by
an application, they create IFD0 in memory, then copy it to the end of the file and update the offset in the
header. If we are creating IFD0, we can safely reuse the spaced occuped by previous IFD0.

Imperial College have medical imaging Tiff files which are of the order of 100 GigaBytes in length. Clearly we
do not want to rewrite such a file to modify a few bytes of metadata. We determine the new IFD0 and write it
at end of the file.

When we update a Makernote, we should “edit in place” and always avoid relocating the data. Regrettably for
a JPEG, that’s almost impossible. As camera manufacturers have higher resolutions and larger displays for
review, the manufacturers want to have larger thumbnails and are happy to store the preview somewhere in
the JPEG and have a hidden offset in the makernote. This works fine until the image is edited when the
preview is lost.

In principle, a Tiff can be garbage collected with a block-map. If we set up a block-map with one bit for every
thousand bytes, we can run the IFDs and mark all the blocks in use. When we rewrite the TIFF (well IFD0
actually), we can inspect the block-map to determine a “hole” in the file at which to write. I would not do this.
It’s unsafe to over-write anything in a Tiff with the exception of IFD0 and the header offset. The situation with
JPEG is more serious. It’s impossible to rewrite the JPEG in place.

The concept of using a block-map to track known data is used in RemoteIo. We use a block-map to avoid
excessive remote I/O by reading data into a cache. We never read data twice. We do not need contiguous
memory for the file. This is discussed in 5. I/O in Exiv2

I would like to express my dismay with the design of most image containers. There is a much simpler design
used by macOS and that is a bundle. A bundle is a directory of files which includes the file Info.plist. It appears
in the Finder to be a simple entity like a file. The terminal command ditto is provided to copy them. All
programming languages can manipulte files. The metadata in an image should be a little Tiff or sidecar in a
bundle. In principle, a container such as Tiff is a collection of streams that are both relocatable and never
reference external data. Sadly, TIFF and JPEG make it very easy to break both rules. The design of JPEG makes
it almost impossible to edit anything without relocating all the data. The situation with video is even more
serious as the files are huge. In the PDF format, the file maintains a directory of objects. The objects can be
safely relocated because objects reference each other by name and not the file offset.

There are tags in Tiff such as ImageWidth which cannot be modified without rewriting the pixels in the image.
Exif protects those tags in the functions TiffHeader::isImageTag() and Cr2Header::isImageTag().

Garbage Collecting Tiff Files

Metadata that cannot be edited

DCP Camera Profiles

2020-Dec-6, 15:01IMaEA

Page 19 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

The Adobe Camera Raw Convertor installs CameraProfiles .dcp files in /Library/Application
Support/Adobe/CameraRaw/CameraProfiles/ (on macOS). Camera Profiles are defined in the Adobe DNG
Specification. They are a modified TIFF format which has the Signature “IIRClong”. Example:

TOC

569 rmills@rmillsmm-local:~/gnu/exiv2/team/book $ dmpf count=40 files/NikonD5300.dcp
 0 0: IIRC.___._..._.___.___!.._.___._ -> 49 49 52 43 08 00 00 00 11 00 14 c6 02 00 0c 00 00 00 da 00 00 00 21 c6 0a 00 09 00 00 00 e6 00
 0x20 32: __".._._ -> 00 00 22 c6 0a 00 09 00
570 rmills@rmillsmm-local:~/gnu/exiv2/team/book $ build/tvisitor files/NikonD5300.dcp
STRUCTURE OF TIFF FILE (II): files/NikonD5300.dcp
 address | tag | type | count | offset | value
 10 | 0xc614 Exif.DNG.UniqueCameraModel | ASCII | 12 | 218 | Nikon D5300
 22 | 0xc621 Exif.DNG.ColorMatrix1 | SRATIONAL | 9 | 230 | 9672/10000 4294963143/10000 64/10000 +++
 34 | 0xc622 Exif.DNG.ColorMatrix2 | SRATIONAL | 9 | 302 | 6988/10000 4294965912/10000 42949665 +++
 46 | 0xc65a Exif.DNG.CalibrationIllumi.. | SHORT | 1 | | 17
 58 | 0xc65b Exif.DNG.CalibrationIllumi.. | SHORT | 1 | | 21
 70 | 0xc6f4 Exif.DNG.ProfileCalibratio.. | ASCII | 10 | 374 | com.adobe
 82 | 0xc6f8 Exif.DNG.ProfileName | ASCII | 17 | 384 | Camera Landscape
 94 | 0xc6fc Exif.DNG.ProfileToneCurve | FLOAT | 128 | 402 | 0 0 983631792 989550973 992020400 99 +++
 106 | 0xc6fd Exif.DNG.ProfileEmbedPolicy | LONG | 1 | | 1
 118 | 0xc6fe Exif.DNG.ProfileCopyright | ASCII | 35 | 914 | Copyright 2012 Adobe Systems, Inc.
 130 | 0xc714 Exif.DNG.ForwardMatrix1 | SRATIONAL | 9 | 950 | 7978/10000 1352/10000 313/10000 2880 +++
 142 | 0xc715 Exif.DNG.ForwardMatrix2 | SRATIONAL | 9 | 1022 | 7978/10000 1352/10000 313/10000 2880 +++
 154 | 0xc725 Exif.DNG.ProfileLookTableD.. | LONG | 3 | 1094 | 90 16 16
 166 | 0xc726 Exif.DNG.ProfileLookTableD.. | FLOAT | 69120 | 1106 | 0 1065353216 1065353216 1109273108 1 +++
 178 | 0xc7a4 Exif.DNG.ProfileLookTableE.. | LONG | 1 | | 1
 190 | 0xc7a5 Exif.DNG.BaselineExposureO.. | SRATIONAL | 1 | 277586 | 4294967261/100
 202 | 0xc7a6 Exif.DNG.DefaultBlackRender | LONG | 1 | | 1
END: files/NikonD5300.dcp
571 rmills@rmillsmm-local:~/gnu/exiv2/team/book $

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Bash

2020-Dec-6, 15:01IMaEA

Page 20 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

JPEG and EXF are almost the same thing, however most graphics applications will reject EXF because it is not
a valid JPEG. ExifTool also supports EXF. In tvisitor.cpp, class JpegImage handles both and the only difference
is respected in JpegImage::valid():

JPEG and EXV Format

2020-Dec-6, 15:01IMaEA

Page 21 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

And here it is in action:

bool JpegImage::valid()
{
 IoSave restore(io(),0);
 bool result = false;
 byte h[2];
 io_.read(h,2);
 if (h[0] == 0xff && h[1] == 0xd8) { // .JPEG
 start_ = 0;
 format_ = "JPEG";
 endian_ = keLittle;
 result = true;
 } else if (h[0] == 0xff && h[1]==0x01) { // .EXV
 DataBuf buf(5);
 io_.read(buf);
 if (buf.is("Exiv2")) {
 start_ = 7;
 format_ = "EXV";
 endian_ = keLittle;
 result = true;
 }
 }
 return result;
} // JpegImage::valid()

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

.../book/build $./tvisitor -pS ~/Stonehenge.jpg
STRUCTURE OF JPEG FILE (II): /Users/rmills/Stonehenge.jpg
 address | tag type count | value
 0 | 0xffd8 SOI
 2 | 0xffe1 APP1 | 15288 | Exif__II*_.___._..._.___.___..._.___ +++
 15292 | 0xffe1 APP1 | 2610 | http://ns.adobe.com/xap/1.0/_<?xpack +++
 17904 | 0xffed APP13 | 96 | Photoshop 3.0_8BIM.._____'..__._...Z +++
 18002 | 0xffe2 APP2 | 4094 | MPF_II*_.___.__.._.___0100..._.___._ +++
 22098 | 0xffdb DQT | 132
 22232 | 0xffc0 SOF0 | 17
 22251 | 0xffc4 DHT | 418
 22671 | 0xffda SOS
END: /Users/rmills/Stonehenge.jpg
.../book/build $ exiv2 -ea --verbose --force ~/Stonehenge.jpg
File 1/1: /Users/rmills/Stonehenge.jpg
Writing Exif data from /Users/rmills/Stonehenge.jpg to /Users/rmills/Stonehenge.exv
Writing IPTC data from /Users/rmills/Stonehenge.jpg to /Users/rmills/Stonehenge.exv
Writing XMP data from /Users/rmills/Stonehenge.jpg to /Users/rmills/Stonehenge.exv
.../book/build $./tvisitor -pS ~/Stonehenge.exv
STRUCTURE OF EXV FILE (II): /Users/rmills/Stonehenge.exv
 address | tag type count | value
 0 | 0xff01
 7 | 0xffe1 APP1 | 15296 | Exif__II*_.___._..._.___.___..._.___ +++
 15305 | 0xffe1 APP1 | 2610 | http://ns.adobe.com/xap/1.0/_<?xpack +++
 17917 | 0xffed APP13 | 68 | Photoshop 3.0_8BIM.._____...__._...Z +++
 17987 | 0xffd9 EOI
END: /Users/rmills/Stonehenge.exv

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

C++

Bash

2020-Dec-6, 15:01IMaEA

Page 22 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

This is an 8BIM chain and is explained in PSD PhotoShop Document

The JPEG standard restricts a single segment of a JPEG to 64k bytes because the length field is a 16 bit uint16_t.
Exif, XMP and ICC frequently exceed 64k. Regrettably three different schemes are used to enable multiple
consecutive segments to be coalesced into a larger block.

tvisitor.cpp supports Adobe and AGFA extended JPEG.

Adobe have created an ad-hoc standard by placing consecutive APP1 segments with the signature Exif\0\0.
This ad-hoc standard is defined in Adobe’s XMP Specification Part 3 2016+.

Exiv2 has no code to deal with this. It can neither read nor write these files. In fact,
JpegImage::writeMetadata() currently throws when asked to write more than 64k into a JPEG.

This is discussed here: https://dev.exiv2.org/issues/1232 and here is the output of the test files which were
contributed by Phil.

END: /Users/rmills/Stonehenge.exv
.../book/build $

27
28

APP13 Photoshop 3.0 Segment

Extended JPEG

Adobe Exif >64k in JPEG

.../book/build $./tvisitor -pS ~/cs4_extended_exif.jpg
STRUCTURE OF JPEG FILE (II): /Users/rmills/cs4_extended_exif.jpg
 address | marker | length | signature
 0 | 0xffd8 SOI
 2 | 0xffe0 APP0 | 16 | JFIF_..._._.__..
 20 | 0xffe1 APP1 | 65498 | Exif__MM_*___._..._.___.___n.._.___._.__
 65520 | 0xffe1 APP1 | 65498 | Exif__g keys we require'd nex
 131020 | 0xffe1 APP1 | 52820 | Exif__) if ($$segDataPt =~ /^
 183842 | 0xffed APP13 | 4440 | Photoshop 3.0_8BIM..____....__.__..x..#-
 188284 | 0xffe1 APP1 | 4323 | http://ns.adobe.com/xap/1.0/_<?xpacket b
 192609 | 0xffe1 APP1 | 65477 | http://ns.adobe.com/xmp/extension/_C8400
 258088 | 0xffe1 APP1 | 65477 | http://ns.adobe.com/xmp/extension/_C8400
 323567 | 0xffe1 APP1 | 56466 | http://ns.adobe.com/xmp/extension/_C8400
 380035 | 0xffe2 APP2 | 3160 | ICC_PROFILE_..__.HLino..__mntrRGB XYZ ..
 383197 | 0xffee APP14 | 14 | Adobe_d.___...
 383213 | 0xffdb DQT | 132 | _.......................................
 383347 | 0xffc0 SOF0 | 17 | ..T...."_........
 383366 | 0xffdd DRI | 4 | _...
 383372 | 0xffc4 DHT | 319 | __........_______._..........._........_
 383693 | 0xffda SOS | 12 | .._...._?_.T
END: /Users/rmills/cs4_extended_exif.jpg
.../book/build $./tvisitor -pS ~/multi-segment_exif.jpg
STRUCTURE OF JPEG FILE (II): /Users/rmills/multi-segment_exif.jpg
 address | marker | length | signature
 0 | 0xffd8 SOI
 2 | 0xffe1 APP1 | 65535 | Exif__II*_.___._..._.___.___..._.___.___
 65539 | 0xffe1 APP1 | 5603 | Exif__..................................
 71144 | 0xffdb DQT | 132 | _.......................................

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Bash

https://dev.exiv2.org/issues/1232

2020-Dec-6, 15:01IMaEA

Page 23 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

This is discussed in https://dev.exiv2.org/issues/1232 I think it is desirable to support reading this data.
Exiv2 should write using Adobe’s JPEG > 64k ad-hoc standard.

The Agfa MakerNote contains an IFD which is preceded by ABC_II#E where #E is number of entries in the
IFD. This is discussed in 2.5 MakerNotes

This is documented by ICC in ICC1v43_2010-12.pdf and implemented in Exiv2 for both reading and writing.
The ICC profile has a signature of ICC_PROFILE_ followed by two uint8_t values which are the chunk
sequence and the chunks count. The remainder of the data is the ICC profile. The test file
test/data/ReaganLargeJpg.jpg has data in the format.

 71144 | 0xffdb DQT | 132 | _.......................................
 71278 | 0xffc4 DHT | 418 | __........________............_.........
 71698 | 0xffc0 SOF0 | 17 | ..0.@..!_........
 71717 | 0xffda SOS | 12 | .._...._?_..
END: /Users/rmills/multi-segment_exif.jpg
.../book/build $

28
29
30
31
32
33

AGFA Exif >64k in JPEG

.../book/build $./tvisitor -pS ~/Agfa.jpg
STRUCTURE OF JPEG FILE (II): /Users/rmills/Agfa.jpg
 address | marker | length | signature
 0 | 0xffd8 SOI
 2 | 0xffe1 APP1 | 46459 | Exif__II*_.___._..._.___.___..._.___.___..._._
 46463 | 0xffe3 APP3 | 65535 |_._.......................................
 112000 | 0xffe4 APP4 | 65535 | ..Hc..w .8<...z..M.77.h...{......C.y1...... .k
 177537 | 0xffe5 APP5 | 7243 | .U......K..u=).pl.W.F...B.$.3....mg}q.....Hb.m
 184782 | 0xffdb DQT | 132 |
 184916 | 0xffc0 SOF0 | 17 |
 184935 | 0xffc4 DHT | 75 |
 185012 | 0xffda SOS | 12 |
END: /Users/rmills/Agfa.jpg
.../book/build $

1
2
3
4
5
6
7
8
9
10
11
12
13
14

ICC Profile data > 64k in JPEG

Bash

https://dev.exiv2.org/issues/1232

2020-Dec-6, 15:01IMaEA

Page 24 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

This is documented by Adobe in the XMP Specification 2016+ and implemented in Exiv2 in the API
JpegBase::printStructure::(kpsXMP). It is not implemented in JpegBase::readMetadata().

Adobe have implemented transparency in JPEG by storing a PostScript clippath in the APP13 Photoshop 3.0
segment. Exiv2 has no code to deal with this. There is an Exif tag ClipPath which Exiv2 does support. I have
encountered PhotoShop APP13 transparency. I’ve never encountered Exif.Image.ClipPath.

TOC

1155 rmills@rmillsmbp:~/gnu/github/exiv2/0.27-maintenance $ exiv2 -pS test/data/ReaganLargeJpg.jpg
STRUCTURE OF JPEG FILE: test/data/ReaganLargeJpg.jpg
 address | marker | length | data
 0 | 0xffd8 SOI
 2 | 0xffe0 APP0 | 16 | JFIF.....,.,....
 20 | 0xffe1 APP1 | 4073 | Exif..MM.*......................
 4095 | 0xffe1 APP1 | 6191 | http://ns.adobe.com/xap/1.0/.<?x
 10288 | 0xffe2 APP2 | 65535 | ICC_PROFILE...... APPL....prtrRG chunk 1/25
 75825 | 0xffe2 APP2 | 65535 | ICC_PROFILE....S...r.R...t.RT..w chunk 2/25
 141362 | 0xffe2 APP2 | 65535 | ICC_PROFILE.....o..b.tn..Q.Km... chunk 3/25
...
 1517639 | 0xffe2 APP2 | 65535 | ICC_PROFILE...9.0.894.0.901.0.90 chunk 24/25
 1583176 | 0xffe2 APP2 | 41160 | ICC_PROFILE....463.0.465.0.469.0 chunk 25/25
 1624338 | 0xffdb DQT | 67
 1624407 | 0xffdb DQT | 67
 1624476 | 0xffc2 SOF2 | 17
 1624495 | 0xffc4 DHT | 30
 1624527 | 0xffc4 DHT | 27
 1624556 | 0xffda SOS
1156 rmills@rmillsmbp:~/gnu/github/exiv2/0.27-maintenance $

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

XMP data > 64k in JPEG

Other Unusual Adobe JPEG Features

Bash

2020-Dec-6, 15:01IMaEA

Page 25 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

The PNG specification is available https://www.w3.org/TR/2003/REC-PNG-20031110/.

PNG is always bigEndian encoded. PNG has an 8 byte fixed header followed by a linked list of chunks. A
chunk is 12 or more bytes and has a uint32_t length, char[4] chunk identifier, followed by binary data. The
chunk data is trailed by a uint32_t checksum calculated by the zlib compression library.

We validate a PNG with the following code:

PNG Portable Network Graphics

bool PngImage::valid()
{
 IoSave restore(io(),0);
 bool result = true ;
 const byte pngHeader[] = { 0x89, 0x50, 0x4E, 0x47, 0x0D, 0x0A, 0x1A, 0x0A };
 for (size_t i = 0 ; result && i < sizeof (pngHeader); i ++) {
 result = io().getb() == pngHeader[i];
 }
 if (result) {
 start_ = 8 ;
 endian_ = keBig ;
 format_ = "PNG" ;
 }
 return result;
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

C++

https://www.w3.org/TR/2003/REC-PNG-20031110/

2020-Dec-6, 15:01IMaEA

Page 26 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

Navigating a PNG is straight forward:

Reporting Exif and XMP is also easy.

void PngImage::accept(class Visitor& v)
{
 if (valid()) {
 v.visitBegin(*this);
 IoSave restore(io(),start_);
 uint64_t address = start_ ;
 while (address < io().size()) {
 io().seek(address);
 uint32_t length = io().getLong(endian_);
 uint64_t next = address + length + 12;
 char chunk [5] ;
 io().read(chunk ,4) ;
 chunk[4] = 0 ; // nul byte

 io().seek(next-4); // jump over data to checksum
 uint32_t chksum = io().getLong(endian_);
 v.visitChunk(io(),*this,address,chunk,length,chksum); // tell the visitor
 address = next ;
 }
 v.visitEnd(*this);
 }
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

void Visitor::visitChunk(Io& io,Image& image
 ,uint64_t address,char* chunk,uint32_t length,uint32_t chksum)
{
 IoSave save(io,address+8);
 DataBuf data(length);
 io.read(data);

 if (option() & (kpsBasic | kpsRecursive)) {
 out() << stringFormat(" %8d | %s | %7d | %#10x | ",address,chunk,length,chksum)
 if (length > 40) length = 40;
 out() << data.toString(kttUndefined,length,image.endian()) << std::endl;
 }

 if (option() & kpsRecursive && std::strcmp(chunk,"eXIf") == 0) {
 Io tiff(io,address+8,length);
 TiffImage(tiff).accept(*this);
 }

 if (option() & kpsXMP && std::strcmp(chunk,"iTXt")==0) {
 if (data.strcmp("XML:com.adobe.xmp")==0) {
 out() << data.pData_+22 ;
 }
 }
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

PNG ICC Profiles and XMP

C++

C++

2020-Dec-6, 15:01IMaEA

Page 27 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

As PNG chunks have a 32 bit length field, they can be stored as a single chunk. We don’t need the messy
arrangements used in JPEG to distribute data into multiple segments of less than 64k. XMP is normally stored
as a iTXt/uncompressed or zTXt/compressed block. The signature at the start of the chunk is never
compressed.

When an ICC profile is required, it is stored as an iCCP chunk. The signature is “ICC Profile”. The profile is
always compressed.

Some PNG chunks are flate compressed (lossless). You can build tvisitor.cpp with/without the Zlib
compression flag using the cmake option -DEXIV2_ENABLE_PNG. This becomes the compiler define
HAVE_LIBZ which enables additional code.

I’m very pleased to say that neither the Exiv2 or XMP metadata in the image book/png.png have been
compressed and can be easily reported by tvisitor.cpp. It’s very satisfying to use images from this book as test
data for the code in this book.

Several chunks are always compressed. For example, zTXt and iCCP. The payload of zTXt normally comprises
a nul-terminated signature, a one byte compression flag (always zero) followed by compressed data. For
example:

The flate compressed ICC profile follows the “ICC Profile__” signature.

The signatures: “Raw profile type iptc” and “Raw profile type exif” introduce a compressed block which when
expanded is an ascii string with the following format. The number is count of hex code bytes. This is

1174 rmills@rmillsmbp:~/gnu/github/exiv2/0.27-maintenance $ exiv2 -pS test/data/ReaganLargePng.png
STRUCTURE OF PNG FILE: test/data/ReaganLargePng.png
 address | chunk | length | data | checksum
 8 | IHDR | 13 | | 0x8cf910c3
 33 | zTXt | 8461 | Raw profile type exif..x...iv. | 0x91fbf6a0
 8506 | zTXt | 636 | Raw profile type iptc..x..TKn. | 0x4e5178d3
 9154 | iTXt | 7156 | XML:com.adobe.xmp.....<?xpacke | 0x8d6d70ba
 16322 | gAMA | 4 | | 0x0bfc6105
 16338 | iCCP | 1151535 | ICC profile__x...UP.........!! | 0x11f49e31
 1167885 | bKGD | 6 | | 0xa0bda793
 1167903 | pHYs | 9 | ...#...#. | 0x78a53f76
 1167924 | tIME | 7 |2 | 0x582d32e4
 1167943 | zTXt | 278 | Comment..x.}..n.@....O..5..h.. | 0xdb1dfff5
 1168233 | IDAT | 8192 | x...k.%.u%....D......GWW...ER. | 0x929ed75c
 1176437 | IDAT | 8192 | .F('.T)\....D"]..."2 '(...D%.. | 0x52c572c0
 1184641 | IDAT | 8192 | y-.....>....3..p.....$....E.Bj | 0x65a90ffb
 1192845 | IDAT | 8192 |S....?..G.....G........... | 0xf44da161
 1201049 | IDAT | 7173 | .evl...3K..j.S.....x......Z .D | 0xbe6d3574
 1208234 | IEND | 0 | | 0xae426082
1175 rmills@rmillsmbp:~/gnu/github/exiv2/0.27-maintenance $

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

PNG and the Zlib compression library

 address | chunk | length | checksum | data | decompressed
 16338 | iCCP | 1151535 | 0x11f49e31 | ICC profile__x...UP......._.!!B....a.qwW | _..
 <signature>__compressed data = decompressed

1
2
3

Bash

Bash

2020-Dec-6, 15:01IMaEA

Page 28 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

redundant and does not need to be decoded.

This data is revealed by tvisitor as follows:

Converting hex encoded binary is straight-forward. Because hex encoded binary is always longer than the
data, decoding updates the input buffer and returns the updated length.

\n
exif\n
 number\n
hexEncodedBinary\n
....

1
2
3
4
5

 addr | chunk | length | checksum | data | decompressed
 33 | zTXt | 8461 | 0x91fbf6a0 | Raw profile type exif__x...iv. | .exif. 8414.457869660000
 8506 | zTXt | 636 | 0x4e5178d3 | Raw profile type iptc__x..TKn. | .iptc. 778.3842494d0404

1
2
3

static int hexToString(char buff[],int length)
{
 int r = 0 ; // resulting length
 int t = 0 ; // temporary
 bool first = true;
 bool valid[256];
 int value[256];
 for (int i = 0 ; i < 256 ; i++) valid[i] = false;
 for (int i = '0' ; i <= '9' ; i++) {
 valid[i] = true;
 value[i] = i - '0';
 }
 for (int i = 'a' ; i <= 'f' ; i++) {
 valid[i] = true;
 value[i] = 10 + i - 'a';
 }
 for (int i = 'A' ; i <= 'F' ; i++) {
 valid[i] = true;
 value[i] = 10 + i - 'A';
 }

 for (int i = 0; i < length ; i++)
 {
 char x = buff[i];
 if (valid[x]) {
 if (first) {
 t = value[x] << 4;
 first = false ;
 } else {
 first = true;
 buff[r++] = t + value[x];
 }
 }
 }
 return r;
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

Bash

C++

2020-Dec-6, 15:01IMaEA

Page 29 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

Here is an important section of the standard concerning textual metadata:

11.3.4 Textual information

11.3.4.1 Introduction

PNG provides the tEXt, iTXt, and zTXt chunks for storing text strings associated with the image, such as an
image description or copyright notice. Keywords are used to indicate what each text string represents. Any
number of such text chunks may appear, and more than one with the same keyword is permitted.

11.3.4.2 Keywords and text strings

The following keywords are predefined and should be used where appropriate.

Title Short (one line) title or caption for image

Author Name of image’s creator

Description Description of image (possibly long)

Copyright Copyright notice

Creation Time Time of original image creation

Software Software used to create the image

Disclaimer Legal disclaimer

Warning Warning of nature of content

Source Device used to create the image

Comment Miscellaneous comment

Other keywords may be defined for other purposes. Keywords of general interest can be registered with the
PNG Registration Authority. It is also permitted to use private unregistered keywords.

As tvisitor displays the chunks and decompressed data, no further processing is necessary to see this data.
However, cannot display this data apart from the zTXt/Description Chunk described below. To support this in
Exiv2 requires a new “Family” of metadata with keys such as: Png.zTXt.Author. Adding a new “Family” is a
considerable undertaking. The project to have a “unified” metadata container should be undertaken first.

There’s an option $ exiv2 -c abcdefg foo.jpg which will set the “Comment” in a JPEG file. You can
print the comment with $ exiv2 -pc foo . A “Comment” in a JPEG is a top level COM segment in the
JPEG. Somebody decided to use those commands on a PNG to update an iTXt chunk with the signature
“Description”.

TOC

Exiv2 Comment zTXt/Description Chunk

2020-Dec-6, 15:01IMaEA

Page 30 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

JP2 is always big-endian encoded. The documentation is available here:
https://www.iso.org/standard/78321.html

The JPEG 2000 file is an ISOBMFF Container. It consists of a linked lists of “boxes” which have a uint32_t
length, char[4] box-type and (length-8) bytes of data. A box may be a “super-box” which is a container for
other boxes. A “super-box” can have binary data before the box-chain. Reading the file is very easy, however
you need the specification to decode the contents of a box.

I believe the “box” idea in ISOBMFF is intended to address the issue I discussed about TIFF files. In order to
rewrite an image, it is necessary for the data to be self contained and relocatable. Every “box” should be self
contained with no offsets outside the box. My study of JP2 is restricted to finding the Exiv2, ICC, IPTC and
XMP data. For sure these are self-contained blocks of binary data. The metadata boxes are of type uuid and
begin with a 128bit/16 byte UUID to identify the data.

In a JP2 the first box, must be box-type of “jP__” and have a length of 12. The chain is terminated with a box-
type of “jpcl”. Usually the terminal block with bring you to the end-of-file, however this should not be
assumed as there can be garbage following the box chain. The box chain of a super-box is normally terminated
by reaching the end of its data.

Validating a JP2 file is straight forward:

JP2 JPEG 2000

2020-Dec-6, 15:01IMaEA

Page 31 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

The accept function is also straight forward:

There is a little complication when you create the recursive Jp2Image. We do not wish to validate this because
it never starts with box-type of “jP__”. We know the file is valid, so we set the valid_ flag before the recursion.

The function ReportVisitor::visitBox() is also straight forward:

bool Jp2Image::valid()
{
 if (!valid_) {
 start_ = 0;
 IoSave restore (io(),start_);
 uint32_t length = io().getLong(endian_);
 uint32_t box ;
 io().read(&box,4);
 valid_ = length == 12 && boxName(box) == kJp2Box_jP;
 }
 return valid_ ;
}

1
2
3
4
5
6
7
8
9
10
11
12

void Jp2Image::accept(class Visitor& v)
{
 if (valid()) {
 v.visitBegin(*this);
 IoSave restore(io(),start_);
 uint64_t address = start_ ;
 while (address < io().size()) {
 io().seek(address);
 uint32_t length = io().getLong(endian_);
 uint32_t box ;
 io().read(&box,4);
 v.visitBox(io(),*this,address,box,length); // tell the visitor
 // recursion if superbox
 if (superBox(box)) {
 uint64_t subA = io().tell() ;
 Jp2Image jp2(io(),subA,length-8);
 jp2.valid_ = true ;
 jp2.accept(v);
 }
 address = boxName(box) == kJp2Box_jp2c ? io().size() : address + length ;
 }
 v.visitEnd(*this);
 }
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

C++

C++

2020-Dec-6, 15:01IMaEA

Page 32 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

Although the JP2 file is big endian, the embedded Exif metadata may be little-endian encoded. That’s the case
with test file Reagan.jp2.

void ReportVisitor::visitBox(Io& io,Image& image,uint64_t address
 ,uint32_t box,uint32_t length)
{
 IoSave save(io,address+8);
 length -= 8 ;
 DataBuf data(length);
 io.read(data);

 std::string name = image.boxName (box);
 std::string uuid = image.uuidName(data);

 if (option() & (kpsBasic | kpsRecursive)) {
 out() << indent() << stringFormat("%8d | %7d | %#10x %4s | %s | ",address,length
 if (length > 40) length = 40;
 out() << data.toString(kttUndefined,length,image.endian()) << std::endl;
 }
 if (option() & kpsRecursive && uuid == "exif") {
 Io tiff(io,address+8+16,data.size_-16); // uuid is 16 bytes (128 bits)
 TiffImage(tiff).accept(*this);
 }
 if (option() & kpsXMP && uuid == "xmp ") {
 out() << data.pData_+17 ;
 }
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

.../book/build $./tvisitor -pR ../test/data/Reagan.jp2
STRUCTURE OF JP2 FILE (MM): ../test/data/Reagan.jp2
 address | length | box | uuid | data
 0 | 4 | 0x2020506a jP | |
 12 | 12 | 0x70797466 ftyp | | jp2 ____jp2

1
2
3
4
5

C++

Bash

2020-Dec-6, 15:01IMaEA

Page 33 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

 12 | 12 | 0x70797466 ftyp | | jp2 ____jp2
 32 | 37 | 0x6832706a jp2h | | ___.ihdr___.___._..._____.colr._____.
 STRUCTURE OF JP2 FILE (MM): ../test/data/Reagan.jp2:40->37
 address | length | box | uuid | data
 0 | 14 | 0x72646869 ihdr | | ___.___._...__
 22 | 7 | 0x726c6f63 colr | | ._____.
 END: ../test/data/Reagan.jp2:40->37
 77 | 1334 | 0x64697575 uuid | exif | JpgTiffExif->JP2II*_.___._..._..__.___..
 STRUCTURE OF TIFF FILE (II): ../test/data/Reagan.jp2:101->1318
 address | tag | type | count | offset | value
 10 | 0x010e Exif.Image.ImageDescription | ASCII | 403 | 170 | 040621-N-6536T-062
 22 | 0x010f Exif.Image.Make | ASCII | 18 | 574 | NIKON CORPORATION
...
 142 | 0x8769 Exif.Image.ExifTag | LONG | 1 | | 2191130661
 STRUCTURE OF TIFF FILE (II): ../test/data/Reagan.jp2:101->1318
 address | tag | type | count | offset | value
 714 | 0x829a Exif.Photo.ExposureTime | RATIONAL | 1 | 1162 | 1/125
...
 1122 | 0xa40a Exif.Photo.Sharpness | SHORT | 1 | | 0
 END: ../test/data/Reagan.jp2:101->1318
 STRUCTURE OF TIFF FILE (II): ../test/data/Reagan.jp2:101->1318
 address | tag | type | count | offset | value
 1302 | 000000 Exif.GPSInfo.GPSVersionID | UBYTE | 4 | | 122 97 98 101
 END: ../test/data/Reagan.jp2:101->1318
 END: ../test/data/Reagan.jp2:101->1318
 1419 | 934 | 0x64697575 uuid | iptc | 3.....G#.......8..__._...._.040621-N-653
 2361 | 5582 | 0x64697575 uuid | xmp | .z....B..q......<?xpacket begin="..." id
 7951 | 32650 | 0x6332706a jp2c | | .O.Q_/_____.___.___________.___.________
END: ../test/data/Reagan.jp2
.../book/build $

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

Box Specifications

2020-Dec-6, 15:01IMaEA

Page 34 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

These are stored in the ‘colr’ box which is a sub-box of ‘jp2h’. I have found the specification very
unsatisfactory. w15177_15444 discusses ColourInformationBox extends Box(‘colr’). I haven’t found the
definition of ‘colr’. I enquired on the ExifTool Forum and Phil offered advice which has been implemented in
jp2image.cpp. There are two ways to encode the profile. You can use a uuid box with the uuid of
“\x01\x00\x00\x00\x00\x00\x10\x00\x00\x05\x1c”. The box payload is the ICC profile. Or you can use the
‘colr’ box which has 3 padding bytes “\02\0\0” followed by the ICC profile. So the length of the box will be 8
(the box) +3 (padding) +iccProfile.size()

I found an older version of the spec in which ‘colr’ is documented on p161.
http://hosting.astro.cornell.edu/~carcich/LRO/jp2/ISO_JPEG200_Standard/INCITS+ISO+IEC+15444-1-
2000.pdf

ICC Profiles in JP2

http://hosting.astro.cornell.edu/~carcich/LRO/jp2/ISO_JPEG200_Standard/INCITS+ISO+IEC+15444-1-2000.pdf

2020-Dec-6, 15:01IMaEA

Page 35 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

As you can see, the ‘colr’ box is stored at 40+22 bytes into the file and has a length of 3147. The first four bytes
of an ICC profile is the length of the file which in this case is 3144 bytes. The next 4 bytes of the profile are the
maker and in this case is Linotype.

TOC

.../book/build $./tvisitor ~/gnu/github/exiv2/0.27-maintenance/test/data/Reagan2.jp2
STRUCTURE OF JP2 FILE (MM): /Users/rmills/gnu/github/exiv2/0.27-maintenance/test/data/Reagan2.jp2
 address | length | box | uuid | data
 0 | 4 | 0x2020506a jP | |
 12 | 12 | 0x70797466 ftyp | | jp2 ____jp2
 32 | 3177 | 0x6832706a jp2h | | ___.ihdr___.___._....___.Scolr.____.HLin
 STRUCTURE OF JP2 FILE (MM): /Users/rmills/gnu/github/exiv2/0.27-maintenance/test/data/Reagan2.jp2:40-
 address | length | box | uuid | data
 0 | 14 | 0x72646869 ihdr | | ___.___._...._
 22 | 3147 | 0x726c6f63 colr | | .____.HLino..__mntrRGB XYZ .._._._._1__a
 END: /Users/rmills/gnu/github/exiv2/0.27-maintenance/test/data/Reagan2.jp2:40->3177
 3217 | -8 | 0x6332706a jp2c | | .O.Q_/_____.___.___________.___.________
END: /Users/rmills/gnu/github/exiv2/0.27-maintenance/test/data/Reagan2.jp2
.../book/build $

1
2
3
4
5
6
7
8
9
10
11
12
13
14

.../book/build $ dmpf skip=$((40+22)) count=19 endian=1 ~/gnu/github/exiv2/0.27-maintenance/test/data/Reagan2.jp2
 0x3e 62: __.Scolr.____.HLino -> 00 00 0c 53 63 6f 6c 72 02 00 00 00 00 0c 48 4c 69 6e 6f 02
 <--3147---> c o l r <-pad--> <--3144---> L i n o
.../book/build $

1
2
3
4

Bash

Bash

2020-Dec-6, 15:01IMaEA

Page 36 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

I obtained the standard here: https://mpeg.chiariglione.org/standards/mpeg-4/iso-base-media-file-
format/text-isoiec-14496-12-5th-edition

There has been a lot of discussion in Team Exiv2 concerning the legality of reading this file. I don’t believe it’s
illegal to read metadata from a container. I believe it’s illegal to decode proprietary encoded data stored in the
image. However the metadata is not protected in anyway. So, I’ll implement this in tvisitor.cpp. Team Exiv2
may agree to include this in Exiv2 v0.28. If I ever work on Exiv2 v0.27.4, I will implement ISOBMFF by
extending the existing JP2 code.

The most obvious difference between JP2000 and ISOBMFF is the first box. For JP2, this is of type jP
(jPspacespace) followed by ftyp. ISOBMFF files begin with an ftyp box. The syntax of the ftyp box is:

So there are two uint32_t values which are the brand and minor_version. Then zero or more uint32_t values
for compatible brands.

A box name is a 4 byte big-endian byte stream and stored in a uint32_t. It is not nul-terminated. So the box
type jP (jPspacespace) is 0x2020506a, and ftyp is 0x70794666.

This is mechanism to store binary data in any format. The ISOBMFF Specification states: Type Fields not defined
here are reserved. Private extensions shall be achieved through the ‘uuid’ type. The uuid box has a 128 bit (16 byte)
UUID to identify the data, followed by the data. This is similar to the “signature” in JPEG segment or PNG
chunk.

I’ve found the open-source product ISOBMFF Explorer very useful in learning about this file format.
https://imazing.com/isobmff/download. The code is available from:
(https://github.com/DigiDNA/ISOBMFF)[https://github.com/DigiDNA/ISOBMFF].

I built it as follows. You should use the git –recursive option to ensure that Submodules are also cloned.

Very nice program with very nice code. In addition to the GUI/Explorer, there is command-line utility
ISOBMFF-Dump provided. I also built it with Visual Studio 2019. I believe the GUI is only provided on the
Mac. The command-line program is supported on Mac, Windows and Linux.

ISOBMFF, CR3, HEIF, AVIF

aligned(8) class FileTypeBox extends Box(‘ftyp’) {
 unsigned int(32) major_brand;
 unsigned int(32) minor_version;
 unsigned int(32) compatible_brands[]; // to end of the box
}

1
2
3
4
5

Box Names

UUID Box uuid

ISOBMFF Explorer

$ git clone --recursive https://github.com/DigiDNA/ISOBMFF --depth 1
$ open ISOBMFF.xcodeproj/

1
2

Bash

https://mpeg.chiariglione.org/standards/mpeg-4/iso-base-media-file-format/text-isoiec-14496-12-5th-edition
https://imazing.com/isobmff/download

2020-Dec-6, 15:01IMaEA

Page 37 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

It did not build out of the box for me on Ubuntu18.04. [https://github.com/DigiDNA/ISOBMFF/issues/12]
(https://github.com/DigiDNA/ISOBMFF/issues/12}

This is a dump from a CR3:

Canon CR3 Format

2020-Dec-6, 15:01IMaEA

Page 38 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

The CR3 format has been well documented by Laurent Clévy here: https://github.com/lclevy/canon_cr3.git

The XMP is clearly marked in a uuid packet. The Exif metadata is stored as 4 embedded TIFF files in the
Canon uuid packet. The four files are the ‘tiffTags’, ‘exifTags’, ‘canonTags’ and ‘gpsTags’. In the test files, the
gpsTags are about 1800 bytes of mostly zeros!

Laurent hasn’t identified IPTC and ICC data. There is a discussion about concerning ICC in JP2000 files and I
believe that’s what is used by CR3. I have not discovered anything about IPTC in CR3 files.

The THMB record is a JPEG and written at an offset of 24 bytes into the record.

In this case, the thumbnail is 160x120 pixels. 11837 is the filesize.

$ tvisitor ~/cr3.cr3
STRUCTURE OF CR3 FILE (MM): /Users/rmills/cr3.cr3
 address | length | box | uuid | data
 0 | 16 | 0x70797466 ftyp | | crx ___.crx isom
 24 | 22784 | 0x766f6f6d moov | | __PXuuid............F+jH___&CNCVCanonCR3
 STRUCTURE OF JP2 FILE (MM): /Users/rmills/cr3.cr3:32->22784
 0 | 20560 | 0x64697575 uuid | can1 | ___&CNCVCanonCR3_001/00.09.00/00.00.00__
 STRUCTURE OF JP2 FILE (MM): /Users/rmills/cr3.cr3:32->22784:24->20552
 0 | 30 | 0x56434e43 CNCV | | CanonCR3_001/00.09.00/00.00.00
 38 | 84 | 0x50544343 CCTP | | _______.___.___.CCDT_______._______.___.
 130 | 84 | 0x4f425443 CTBO | | ___.___.______Y _____._.___._____.Y8____
 222 | 2 | 0x65657266 free | | __
 232 | 384 | 0x31544d43 CMT1 | | II*_.___.__.._.___p.__..._.___..__..._._
 624 | 1056 | 0x32544d43 CMT2 | | II*_.___._..._.___..__..._.___..__"..
 1688 | 5168 | 0x33544d43 CMT3 | | II*_.___/_._._1___B.__._._.___..__._._._
 6864 | 1808 | 0x34544d43 CMT4 | | II*_.___.___._.___..____________________
 8680 | 11856 | 0x424d4854 THMB | | _____._x__.=_.__...._._..............
 20544 | 100 | 0x6468766d mvhd | | ____..4...4.___.___._.__.____________.__
 END: /Users/rmills/cr3.cr3:32->22784:24->20552
 20568 | 100 | 0x6468766d mvhd | | ____..4...4.___.___._.__.____________.__
 20676 | 476 | 0x6b617274 trak | | ___\tkhd___...4...4.___._______.________
 21160 | 576 | 0x6b617274 trak | | ___\tkhd___...4...4.___._______.________
 21744 | 592 | 0x6b617274 trak | | ___\tkhd___...4...4.___._______.________
 22344 | 432 | 0x6b617274 trak | | ___\tkhd___...4...4.___._______.________
 END: /Users/rmills/cr3.cr3:32->22784
 22816 | 65552 | 0x64697575 uuid | xmp | <?xpacket begin='...' id='W5M0MpCehiHzre..'
 88376 | 264921 | 0x64697575 uuid | can2 | _______._...PRVW_____..T.8_._......._._.
 353305 | -7 | 0x7461646d mdat | | _____.j....._._.........................
END: /Users/rmills/cr3.cr3

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

$ (dd bs=1 skip=32 count=22784 if=~/cr3.cr3 | dd bs=1 skip=24 count=20552 | dd bs=1 skip
STRUCTURE OF JPEG FILE: 1596571254.exiv2_temp
 address | marker | length | data
 0 | 0xffd8 SOI
 2 | 0xffdb DQT | 132
 136 | 0xffc0 SOF0 | 17
 155 | 0xffc4 DHT | 418
 575 | 0xffda SOS

1
2
3
4
5
6
7
8

Bash

Bash

https://github.com/lclevy/canon_cr3.git

2020-Dec-6, 15:01IMaEA

Page 39 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

Laurent has documented this as: THMB (Thumbnail) from uuid = 85c0b687-820f-11e0-8111-f4ce462b6a48

Offset type size content

0 long 1 size of this tag

4 char 4 “THMB”

8 byte 1 likely version, value=0 or 1

9 bytes 3 likely flags, value = 0

for version 0:

Offset type size content

12/0xc short 1 width (160)

14/0xe short 1 height (120)

16/0x10 long 1 jpeg image size (jpeg_size)

20/0x14 short 1 unknown, value = 1

22/0x16 short 1 unknown, value = 0

24/0x18 byte[] stored at offset 16 jpeg_data = ffd8ffdb…ffd9

24+jpeg_size byte[] ? padding to next 4 bytes?

long 1 ?

for version 1:

Offset type size content

12/0xc short 1 width (160)

14/0xe short 1 height (120)

16/0x10 long 1 jpeg image size (jpeg_size)

To understand how to parse HEIC and AVIF, we have to discuss the specification of more boxes. The file is
organized into a heirarchy of box as shown in this drawing.

$ (dd bs=1 skip=32 count=22784 if=~/cr3.cr3 | dd bs=1 skip=24 count=20552 | dd bs=1 skip=8680 count=24 | dmpf -endian=1 -bs=2 hex=0 -) 2>/dev/null
 0 0: __.XTHMB_____._x__.=_.__ -> 0 11864 21576 19778 0 0 160 120 0 11837 1 0
$ ls -l foo.jpg
-rw-r--r--@ 1 rmills staff 11832 4 Aug 20:58 foo.jpg

1
2
3
4

HEIC and AVIF

2020-Dec-6, 15:01IMaEA

Page 40 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

The Full Box is specified as follows:

A “Full Box” has a 4 byte header which is version (1 byte) followed by flags (3 bytes).

This is specified as follows:

Full Box

aligned(8) class FullBox(unsigned int(32) boxtype, unsigned int(8) v, bit(24) f)
 extends Box(boxtype) {
 unsigned int(8) version = v;
 bit(24) flags = f;
}

1
2
3
4
5

Handler Box

aligned(8) class HandlerBox extends FullBox(‘hdlr’, version = 0, 0) {
 unsigned int(32) pre_defined = 0;
 unsigned int(32) handler_type;
 const unsigned int(32)[3] reserved = 0;
 string name;
}

1
2
3
4
5
6

Media Box mdat

2020-Dec-6, 15:01IMaEA

Page 41 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

This is specified as follows:

This is pure binary data. From a metadata perspective, this the end of the file.

This is specified as follows:

The Item information box provides extra information about selected items, including symbolic (File) names.

This is specified as follows:

The item location box provides a directory of resources in this or other Files, by locating their container, their offset within
that container, and their length. Placing this in binary format enables common handling of this data, even by systems
which do not understand the particular metadata system used.

This is specified as follows:

aligned(8) class MediaDataBox extends Box(‘mdat’) {
 bit(8) data[];  
}

1
2
3

Meta Box meta

aligned(8) class MetaBox (handler_type)
 extends FullBox(‘meta’, version = 0, 0) {
 HandlerBox(handler_type) theHandler;
 PrimaryItemBox
 DataInformationBox
 ItemLocationBox
 ItemProtectionBox
 ItemInfoBox
 IPMPControlBox
 ItemReferenceBox
 ItemDataBox
 Box other_boxes[];
}

1
2
3
4
5
6
7
8
9
10
11
12
13

Item Information Box iinf

aligned(8) class ItemInfoBox
 extends FullBox(‘iinf’, version, 0) {

 if (version == 0) {
 unsigned int(16) entry_count;
 } else {
 unsigned int(32) entry_count;
 }
 ItemInfoEntry[entry_count]
}

1
2
3
4
5
6
7
8
9
10

Item Location Box iloc

2020-Dec-6, 15:01IMaEA

Page 42 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

I obtained HEIC test files from:
https://github.com/thorsted/digicam_corpus/tree/master/Apple/iPhone%20XR

I dumped IMG_3578.HEIC with dmpf and disassembled it by hand:

aligned(8) class ItemLocationBox extends FullBox(‘iloc’, version, 0) {
 unsigned int(4)
 unsigned int(4)
 unsigned int(4)
 if ((version == 1) || (version == 2)) {
 offset_size;
 length_size;
 base_offset_size;
 unsigned int(4) index_size;
 } else {
 unsigned int(4) reserved;
 }
 if (version < 2) {
 unsigned int(16) item_count;
 } else if (version == 2) {
 unsigned int(32) item_count;
 }
 for (i=0; i<item_count; i++) {
 if (version < 2) {
 unsigned int(16) item_ID;
 } else if (version == 2) {
 unsigned int(32) item_ID;
 }
 if ((version == 1) || (version == 2)) {
 unsigned int(12) reserved = 0;
 unsigned int(4) construction_method;
 }
 unsigned int(16) data_reference_index;
 unsigned int(base_offset_size*8) base_offset;
 unsigned int(16) extent_count;
 for (j=0; j<extent_count; j++) {
 if (((version == 1) || (version == 2)) && (index_size > 0)) {
 unsigned int(index_size*8) extent_index;
 }
 unsigned int(offset_size*8) extent_offset;
 unsigned int(length_size*8) extent_length;
 } // for j
 } // for i
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

Test HEIC File

https://github.com/thorsted/digicam_corpus/tree/master/Apple/iPhone%20XR

2020-Dec-6, 15:01IMaEA

Page 43 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

The code in ISOBMFF/iloc.cpp is (effectively):

 0 0: ___ ftypheic____mif1 -> 00 00 00 20 66 74 79 70 68 65 69 63 00 00 00 00 6d 69 66 31
 < length > f t y p < brand > < minor > m i f 1
 0x14 20: miafMiHBheic__.4meta -> 6d 69 61 66 4d 69 48 42 68 65 69 63 00 00 0d 34 6d 65 74 61
 m i a f M i H B h e i c < length > m e t a
 0x28 40: _______.hdlr________ -> 00 00 00 00 00 00 00 22 68 64 6c 72 00 00 00 00 00 00 00 00
 < version?> < length > h d l r < version > < flags >
 0x3c 60: pict________________ -> 70 69 63 74 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 p i c t < l e
 0x50 80: _$dinf___.dref______ -> 00 24 64 69 6e 66 00 00 00 1c 64 72 65 66 00 00 00 00 00 00
 ngth> d i n f < length > d r e f
 0x64 100: _.___.url ___.___.pi -> 00 01 00 00 00 0c 75 72 6c 20 00 00 00 01 00 00 00 0e 70 69
 < length > u r l sp < length > p i
 0x78 120: tm_____1__.=iinf____ -> 74 6d 00 00 00 00 00 31 00 00 04 3d 69 69 6e 66 00 00 00 00
 t m < length > i i n f < version?>
 0x8c 140: _3___.infe.__._.__hv -> 00 33 00 00 00 15 69 6e 66 65 02 00 00 01 00 01 00 00 68 76
 < E#> < length > i n f e < V > <flag>< ID> h v
 0xa0 160: c1____.infe.__._.__h -> 63 31 00 00 00 00 15 69 6e 66 65 02 00 00 01 00 02 00 00 68
 c 1 < length > i n f e
 0xb4 180: vc1____.infe.__._.__ -> 76 63 31 00 00 00 00 15 69 6e 66 65 02 00 00 01 00 03 00 00
...
 0x44c 1100: .__hvc1____.infe.__. -> 2e 00 00 68 76 63 31 00 00 00 00 15 69 6e 66 65 02 00 00 01
 0x460 1120: _/__hvc1____.infe.__ -> 00 2f 00 00 68 76 63 31 00 00 00 00 15 69 6e 66 65 02 00 00
 0x49c 1180: ____2__hvc1____.infe -> 00 00 00 00 32 00 00 68 76 63 31 00 00 00 00 15 69 6e 66 65
 < length > i n f e
 0x4b0 1200: .__._3__Exif____.ire -> 02 00 00 01 00 33 00 00 45 78 69 66 00 00 00 00 94 69 72 65
 < V > <flag>< ID> <pro> E x i fnul < length > i r e
 0x4c4 1220: f_______ldimg_1_0_._ -> 66 00 00 00 00 00 00 00 6c 64 69 6d 67 00 31 00 30 00 01 00
 f
 0x4d8 1240: ._._._._._._._._._._ -> 02 00 03 00 04 00 05 00 06 00 07 00 08 00 09 00 0a 00 0b 00
...
 0xa14 2580: __.@iloc.___D__3_.__ -> 00 00 03 40 69 6c 6f 63 01 00 00 00 44 00 00 33 00 01 00 00
 < length > i l o c < FullBox > <o-l> <-#E> < ID> < CM>
 0xa28 2600: ___.__*.__.._._____. -> 00 00 00 01 00 00 2a b3 00 00 2e a7 00 02 00 00 00 00 00 01
 <DRI> <OFF> <EXC> 10931 < ??> 11943 < ID> < CM> <DRI> <OFF>
 0xa3c 2620: __YZ__`._._____.__.K -> 00 00 59 5a 00 00 60 f1 00 03 00 00 00 00 00 01 00 00 ba 4b
 <EXC> 22874 ? ? 24817 < ID> < CM> <DRI> <OFF> <EXC> 47691
 0xa50 2640: __N._._____._...__K. -> 00 00 4e 8e 00 04 00 00 00 00 00 01 00 01 08 d9 00 00 4b f9
 0xa64 2660: _._____._.T.__M._.__ -> 00 05 00 00 00 00 00 01 00 01 54 d2 00 00 4d 02 00 06 00 00
 0xa78 2680: ___._...__N._._____. -> 00 00 00 01 00 01 a1 d4 00 00 4e ff 00 07 00 00 00 00 00 01
 0xa8c 2700: _...__F._._____._.7. -> 00 01 f0 d3 00 00 46 cc 00 08 00 00 00 00 00

 EXC = extent_count CM = construction_method #E = Number of Entries DRI = data_reverence_index
 OFF = base_offset o-l = offset-length ID = Indentifier

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

2020-Dec-6, 15:01IMaEA

Page 44 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

When processed by tvisitor, we see:

void ILOC::ReadData(Parser & parser, BinaryStream & stream)
{
 FullBox::ReadData(parser, stream);

 uint8_t u8 = stream.ReadUInt8();
 this->SetOffsetSize(u8 >> 4);
 this->SetLengthSize(u8 & 0xF);

 u8 = stream.ReadUInt8();
 this->SetBaseOffsetSize(u8 >> 4);
 this->SetIndexSize(u8 & 0xF);
 uint32_t count = this->GetVersion() < 2) ?stream.ReadBigEndianUInt16() : stream.ReadBigEndianUInt32

 this->impl->_items.clear();
 for(uint32_t i = 0; i < count; i++)
 {
 this->AddItem(std::make_shared< Item >(stream, *(this)));
 }
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

C++

2020-Dec-6, 15:01IMaEA

Page 45 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

The tvisitor.cpp code is mostly a structural parser. It locates Exif metadata within the meta box and, if the user
has selected the Recursive option (-pR), will report the Exif metadata. However, the basic report can treat

$ tvisitor ~/Downloads/IMG_3578.HEIC
STRUCTURE OF JP2 (heic) FILE (MM): /Users/rmills/Downloads/IMG_3578.HEIC
 address | length | box | uuid | data
 0 | 24 | ftyp | | heic____mif1miafMiHB
 32 | 3372 | meta | | _______.hdlr________ 'meta' box
 STRUCTURE OF JP2 FILE (MM): /Users/rmills/Downloads/IM
 0 | 26 | hdlr | | ________pict______
 34 | 28 | dinf | | ___.dref_______.__ 'meta/dinf' box
 STRUCTURE OF JP2 FILE (MM): /Users/rmills/Downloads/
 0 | 20 | dref | | _______.___.url
 END: /Users/rmills/Downloads/IMG_3578.HEIC:44->3368:
 70 | 6 | pitm | | _____1 0 0 0 0 0 4
 84 | 1077 | iinf | | _____3___.infe.__. 'meta/dinf/iinf' box
 STRUCTURE OF JP2 FILE (MM): /Users/rmills/Downloads/
 0 | 13 | infe | | .__._.__hvc1_ 'meta/dinf/iinf/infe' boxes
...
 1050 | 13 | infe | | .__._3__Exif_ ID==51 "Exif\0"
 END: /Users/rmills/Downloads/IMG_3578.HEIC:44->3368:
 1169 | 140 | iref | | _______ldimg_1_0_.
 1317 | 1195 | iprp | | __.lipco__.0colrpr
 STRUCTURE OF JP2 FILE (MM): /Users/rmills/Downloads/
 0 | 868 | ipco | | __.0colrprof__.$
 STRUCTURE OF JP2 FILE (MM): /Users/rmills/Download
 0 | 552 | colr | | prof__.$appl._
 560 | 104 | hvcC | | ..p___._____Z.
 672 | 12 | ispe | | ______.___._ 0
 692 | 12 | ispe | | ______..__.. 0
 712 | 1 | irot | | _ 0
 721 | 8 | pixi | | ____.... 0 0 0
 737 | 103 | hvcC | | ..p___._____<.
 848 | 12 | ispe | | ______.@___. 0
 END: /Users/rmills/Downloads/IMG_3578.HEIC:44->336
 876 | 311 | ipma | | _______2_....._.
 END: /Users/rmills/Downloads/IMG_3578.HEIC:44->3368:
 2520 | 8 | idat | | __...... 0 0 5 7 1
 2536 | 824 | iloc | | .___D__3_._____.__ 'meta/dinf/iloc' box
 2544 | 16 | ext | 1 | 10931, 11943 iloc is a binary array
...
 3344 | 16 | ext | 51 | 8907, 2024 ID==51 offset/length
 END: /Users/rmills/Downloads/IMG_3578.HEIC:44->3368
 3412 | -7 | mdat | | _____...__.c(........ 'mdat' box (EOF)
 STRUCTURE OF TIFF FILE (MM): /Users/rmills/Downloads/IM Dump the embedded Exif/TIFF
 address | tag | t
 10 | 0x010f Exif.Image.Make | AS
 22 | 0x0110 Exif.Image.Model | AS
...
 END: /Users/rmills/Downloads/IMG_3578.HEIC:8917->2014
 END: /Users/rmills/Downloads/IMG_3578.HEIC:8917->2014
END: /Users/rmills/Downloads/IMG_3578.HEIC

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

Reporting Boxes as Metadata

Bash

2020-Dec-6, 15:01IMaEA

Page 46 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

boxes as metadata and this has been done for the ispe box which is specified as follows:

This is coded into tvisitor.cpp as follows:

The processing of this data is achieved in ReportVisitor::visitBox() as follows:

These tags are reported as metadata as follows:

More information about binary decoding in tvisitor.cpp is discussed in 3.5 ReportVisitor::visitTag()

TOC

6.5.3.2 Syntax
aligned(8) class ImageSpatialExtentsProperty
extends ItemFullProperty('ispe', version = 0, flags = 0) {
unsigned int(32) image_width;
 unsigned int(32) image_height;
}

1
2
3
4
5
6

 // ISOBMFF boxes
 boxDict["ispe"] = "ISOBMFF.ispe";
 boxTags["ispe"].push_back(Field("Version" ,kttUShort , 0, 1));
 boxTags["ispe"].push_back(Field("Flags" ,kttUShort , 2, 1));
 boxTags["ispe"].push_back(Field("Width" ,kttLong , 4, 1));
 boxTags["ispe"].push_back(Field("Height" ,kttLong , 8, 1));

1
2
3
4
5
6

 if (boxDict.find(name) != boxDict.end()) {
 if (boxTags.find(name) != boxTags.end()) {
 for (Field field : boxTags[name]) {
 std::string n = chop(boxDict[name] + "." + field.name(),28);
 endian_e endian = field.endian() == keImage ? image.endian() : field.endian();
 out() << indent() << stringFormat("%-28s ",n.c_str())
 << chop(data.toString(field.type(),field.count(),endian,field.start()),40)
 << std::endl;
 }
 }
 }

1
2
3
4
5
6
7
8
9
10
11

 692 | 12 | ispe | | ______..__.. 0 0 0 0 0 0 15 192 0 0 11 208
 ISOBMFF.ispe.Version 0
 ISOBMFF.ispe.Flags 0
 ISOBMFF.ispe.Width 4032
 ISOBMFF.ispe.Height 3024

1
2
3
4
5

C++

2020-Dec-6, 15:01IMaEA

Page 47 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

The specification is here: CIFFspecV1R04.pdf

TOC

CRW Canon Raw Format

https://web.archive.org/web/20081230095207/http://xyrion.org/ciff/CIFFspecV1R04.pdf

2020-Dec-6, 15:01IMaEA

Page 48 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

This file format is used by WEBP, AVI and WAV files. RIFF was introduced in 1991 by Microsoft and IBM.
There is a discussion of the format here: https://en.wikipedia.org/wiki/Resource_Interchange_File_Format

Testing for validity is easy:

Reporting the data in the file is straight-forward:

RIFF Resource Interchange File Format

bool valid()
{
 if (!valid_) {
 IoSave restore(io(),0);
 DataBuf header(12);
 io().read(header);
 fileLength_ = ::getLong(header,4,endian_);
 valid_ = header.begins("RIFF") && fileLength_ <= io().size();
 char signature[5];
 format_ = header.getChars(8,4,signature);
 header_ = " address | chunk | length | offset | data " ;
 }
 return valid_;
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14

C++

https://en.wikipedia.org/wiki/Resource_Interchange_File_Format

2020-Dec-6, 15:01IMaEA

Page 49 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

TOC

void RiffImage::accept(class Visitor& visitor)
{
 if (!valid_) valid();
 if (valid_) {
 visitor.visitBegin((*this)); // tell the visitor

 IoSave restore(io(),start_);
 uint64_t address = start_;
 DataBuf riff(8);
 DataBuf data(40); // buffer to pass data to visitRiff()
 while (address < fileLength_) {
 visit(address);
 io().seek(address);
 io().read(riff);

 char signature[5];
 std::string chunk = riff.getChars(0,4,signature);
 uint32_t length = ::getLong(riff,4,endian_) ;
 uint64_t pad = length % 2 ? 1 : 0 ; // pad if length is odd
 uint64_t next = io().tell() + length +pad ;
 if (next > fileLength_) Error(kerCorruptedMetadata);

 data.zero();
 io().read(data.pData_,length < data.size_?length:data.size_);
 visitor.visitRiff(address,chunk,length,data);

 if (chunk == "XMP " || chunk == "ICCP") {
 DataBuf Data(length);
 io().seek(address+8);
 io().read(Data);
 if (chunk == "XMP ") visitor.visitXMP(Data);
 if (chunk == "ICCP") visitor.visitICC(Data);
 }
 if (chunk == "EXIF") {
 Io tiff(io(),address+8,length);
 visitor.visitExif(tiff);
 }
 address = next ;
 }
 visitor.visitEnd((*this)); // tell the visitor
 }
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

C++

2020-Dec-6, 15:01IMaEA

Page 50 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

There is information about this format here: http://www.dalibor.cz/software/minolta-raw-mrw-file-format

TOC

MRW Minolta Raw Format

659 rmills@rmillsmbp:~/gnu/exiv2/team/book $ dmpf ~/mrw.mrw count=60 width=16 endian=1 bs
 0 0: _MRM_..._PRD___. -> 77 21069 1 4600 80 21060 0 24
 0x10 16: 27790001......._ -> 12855 14137 12336 12337 1928 2568 1920 2560
 0x20 32: ..R____._TTW_..x -> 4108 20992 0 1 84 21591 1 3960
 0x30 48: MM_*___._.._ -> 19789 42 0 8 10 256
660 rmills@rmillsmbp:~/gnu/exiv2/team/book $

1
2
3
4
5
6

Bash

http://www.dalibor.cz/software/minolta-raw-mrw-file-format

2020-Dec-6, 15:01IMaEA

Page 51 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

This is a member of the TIFF family of formats.

The following is a typical dump:

ORF Olympus Raw Format

.../book 509 rmills@rmillsmbp:~/gnu/exiv2/team/book $ dmpf count=40 width=20 endian=0 hex
 0 0: IIRO.___.__.._.___.. -> 4949 4f52 8 0 15 100 4 1 0 1004
 II magic offset E# tag type count value
 0x14 20: __..._.___..__..._._ -> 0 101 4 1 0 c0c 0 102 3 1
.../book $

1
2
3
4
5

Bash

2020-Dec-6, 15:01IMaEA

Page 52 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

STRUCTURE OF TIFF FILE (II): /Users/rmills/ORF.ORF
 address | tag | type | count | offset | value
 10 | 0x0100 Exif.Image.ImageWidth | LONG | 1 | | 4100
 22 | 0x0101 Exif.Image.ImageLength | LONG | 1 | | 3084
 34 | 0x0102 Exif.Image.BitsPerSample | SHORT | 1 | | 16
...
 238 | 0x8769 Exif.Image.ExifTag | LONG | 1 | | 266
 STRUCTURE OF TIFF FILE (II): /Users/rmills/ORF.ORF
 address | tag | type | count | offset | value
 268 | 0x829a Exif.Photo.ExposureTime | RATIONAL | 1 | 3332 | 1/400
 280 | 0x829d Exif.Photo.FNumber | RATIONAL | 1 | 3372 | 100/10
...
 424 | 0x927c Exif.Photo.MakerNote | UNDEFINED | 1452144 | 3472 | OLYMPUS_II._.__
 STRUCTURE OF FILE (II): /Users/rmills/ORF.ORF:3472->1452144
 14 | 0x0100 Exif.Olympus.ThumbnailImage | UNDEFINED | 4892 | 11792 |
 26 | 0x0200 Exif.Olympus.SpecialMode | LONG | 3 | 4256 | 0 0 0
 50 | 0x2010 Exif.Olympus.Equipment | IFD | 1 | | 114
 STRUCTURE OF FILE (II): /Users/rmills/ORF.ORF:3472->1452144
 116 | 000000 Exif.OlympusEQ.Version | UNDEFINED | 4 |
 128 | 0x0100 Exif.OlympusEQ.CameraType | ASCII | 6 | 4304
 140 | 0x0101 Exif.OlympusEQ.SerialNumber | ASCII | 32 | 4310
 152 | 0x0102 Exif.OlympusEQ.InternalSer.. | ASCII | 32 | 4342
 END: /Users/rmills/ORF.ORF:3472->1452144
 STRUCTURE OF FILE (II): /Users/rmills/ORF.ORF:3472->1452144
 410 | 000000 Exif.OlympusCS.Version | UNDEFINED | 4 |
 422 | 0x0100 Exif.OlympusCS.PreviewImag.. | LONG | 1 |
 434 | 0x0101 Exif.OlympusCS.PreviewImag.. | LONG | 1 |
 446 | 0x0102 Exif.OlympusCS.PreviewImag.. | LONG | 1 |
 458 | 0x0200 Exif.OlympusCS.ExposureMode | SHORT | 1 |
 END: /Users/rmills/ORF.ORF:3472->1452144
 STRUCTURE OF FILE (II): /Users/rmills/ORF.ORF:3472->1452144
 1076 | 000000 Exif.OlymRawDev.Version | UNDEFINED | 4 |
 1088 | 0x0100 Exif.OlymRawDev.ExposureBi.. | SRATIONAL | 1 | 5304
 1100 | 0x0101 Exif.OlymRawDev.WhiteBalan.. | SHORT | 1 |
 1112 | 0x0102 Exif.OlymRawDev.WBFineAdju.. | SSHORT | 1 |
 1124 | 0x0103 Exif.OlymRawDev.GrayPoint | SHORT | 3 | 5316
 END: /Users/rmills/ORF.ORF:3472->1452144
 STRUCTURE OF FILE (II): /Users/rmills/ORF.ORF:3472->1452144
 1250 | 000000 Exif.OlymImgProc.Version | UNDEFINED | 4 |
 1262 | 0x0100 Exif.OlymImgProc.WB_RBLevels | SHORT | 4 | 5354
 END: /Users/rmills/ORF.ORF:3472->1452144
 STRUCTURE OF FILE (II): /Users/rmills/ORF.ORF:3472->1452144
 3488 | 000000 Exif.OlymFocusInfo.Version | UNDEFINED | 4 |
 3596 | 0x0209 Exif.OlymFocusInfo.AutoFocus | SHORT | 1 |
 3680 | 0x0210 Exif.OlymFocusInfo.SceneDe.. | SHORT | 1 |
 3692 | 0x0211 Exif.OlymFocusInfo.SceneArea | LONG | 8 | 8040
 END: /Users/rmills/ORF.ORF:3472->1452144
 END: /Users/rmills/ORF.ORF:3472->1452144
 436 | 0x9286 Exif.Photo.UserComment | UNDEFINED | 125 | 3164 | ________ +++
 448 | 0xa000 Exif.Photo.FlashpixVersion | UNDEFINED | 4 | | 0100
 460 | 0xa001 Exif.Photo.ColorSpace | SHORT | 1 | | 1
...
 END: /Users/rmills/ORF.ORF
END: /Users/rmills/ORF.ORF

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Bash

2020-Dec-6, 15:01IMaEA

Page 53 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

The MakerNote contains almost all the data in the file:

It consists of and single IFD as follows:

The offsets in this IFD are relative to the start of the MakeNote.

Reading this is easy:

We treat it has a TiffImage (although invalid), set the start_ and valid_ variables and accept() parses the
makernote effortlessly.

One of the interesting features of the ORF is the use of Tag Type IFD. These are used to introduce more families
of data for ImageProcession, FocalInformation and other collections. Each of these IFDs requires a dictionary
and these are defined in tvisitor.cpp. You recursively descend into those dictionaries as follows in
IFD::accept():

The appropriate dictionary is selected with the code:

 424 | 0x927c Exif.Photo.MakerNote | UNDEFINED | 1452144 | 3472 | OLYMPUS_II._.__.._..__..___.._.___.. +++1

$ dmpf skip=3472 count=20 bs=2 endian=0 hex=1 ~/ORF.ORF
 0xd90 3472: OLYMPUS_II._.__.._.. -> 4c4f 4d59 5550 53 4949 3 8 100 7 131c
 II unknown E

1
2
3

 } else if (image_.maker_ == kOlym) {
 Io io(io_,offset,count);
 TiffImage makerNote(io,image_.maker_);
 makerNote.start_ = 12 ; // "OLYMPUS\0II\0x3\0x0"E#
 makerNote.valid_ = true; // Valid without magic=42
 makerNote.accept(visitor,makerDict());
 }

1
2
3
4
5
6
7

 if (type == kttIfd) {
 for (uint64_t i = 0 ; i < count ; i++) {
 offset = get4or8 (buff,0,i,endian);
 IFD(image_,offset,false).accept(visitor,ifdDict(image_.maker_,tag,makerDict(
 }
 } else switch (tag) {
 case ktGps : IFD(image_,offset,false).accept(visitor,gpsDict);break;
 case ktExif : IFD(image_,offset,false).accept(visitor,exifDict);break;
 case ktMakerNote : visitMakerNote(visitor,buff,count,offset);break;
 default : /* do nothing */;break;
 }

1
2
3
4
5
6
7
8
9
10
11

Bash

C++

C++

2020-Dec-6, 15:01IMaEA

Page 54 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

There are many tags defined for the ORF file in Exiv2. Only a few have been defined in tvisitor.cpp for
illustration purposes. To see unknown tags:

TOC

TagDict& ifdDict(maker_e maker,uint16_t tag,TagDict& makerDict)
{
 TagDict& result = makerDict ;
 if (maker == kOlym) switch (tag) {
 case 0x2010 : result = olymEQDict ; break;
 case 0x2020 : result = olymCSDict ; break;
 case 0x2030 : result = olymRDDict ; break;
 case 0x2031 : result = olymR2Dict ; break;
 case 0x2040 : result = olymIPDict ; break;
 case 0x2050 : result = olymFIDict ; break;
 case 0x3000 : result = olymRoDict ; break;
 default : /* do nothing */ ; break;
 }
 return result;
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

.../book $ build/tvisitor -pU ~/ORF.ORF

...
 STRUCTURE OF FILE (II): /Users/rmills/ORF.ORF:3472->1452144
 116 | 000000 Exif.OlympusEQ.Version | UNDEFINED | 4 |
 128 | 0x0100 Exif.OlympusEQ.CameraType | ASCII | 6 | 4304
 140 | 0x0101 Exif.OlympusEQ.SerialNumber | ASCII | 32 | 4310
 152 | 0x0102 Exif.OlympusEQ.InternalSer.. | ASCII | 32 | 4342
 164 | 0x0103 Exif.OlympusEQ.0x103 | RATIONAL | 1 | 4376
 176 | 0x0104 Exif.OlympusEQ.0x104 | LONG | 1 |
 188 | 0x0201 Exif.OlympusEQ.0x201 | UBYTE | 6 | 4394
 200 | 0x0202 Exif.OlympusEQ.0x202 | ASCII | 32 | 4400
 212 | 0x0203 Exif.OlympusEQ.0x203 | ASCII | 32 | 4432
...

1
2
3
4
5
6
7
8
9
10
11
12
13

C++

Bash

2020-Dec-6, 15:01IMaEA

Page 55 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

PEF is Tiff. I haven’t found anything special about the PEF format. Of course, it has code for the Pentax
MakerNote and that code is shared with some AVIF files in which the maker is “Ricoh”.

TOC

Pentax Raw

2020-Dec-6, 15:01IMaEA

Page 56 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

The PGF website is https://www.libpgf.org

This file format was introduced in 2000 at the same time as JP2000 with the intention of replacing JPEG.
Neither PGF nor JP2000 have been successful in their aims. While both are technically superior to JPEG, the
market as remained loyal to JPEG. I suspect that is because few Camera manufacturers ship products that
support this format.

The file format is little-endian. Curiously, the metadata is embedded as a PNG which is big-endian.

The code to validate the file is simple:

PGF Progressive Graphics File

https://www.libpgf.org/

2020-Dec-6, 15:01IMaEA

Page 57 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

The visitor code is also straightforward:

TOC

bool valid()
{
 if (!valid_) {
 endian_ = keLittle ;
 IoSave restore(io(),0);
 start_ = 8+16 ;
 DataBuf h(start_);
 io_.read(h);

 if (h.begins("PGF")) {
 start_ = 8+16;
 format_ = "PGF";
 valid_ = true;
 }
 headersize_ = getLong(h, 4,endian_);
 width_ = getLong(h,8 +0,endian_);
 height_ = getLong(h,8 +4,endian_);
 levels_ = getByte(h,8 +8);
 comp_ = getByte(h,8 +9);
 bpp_ = getByte(h,8+10);
 colors_ = getByte(h,8+11);
 mode_ = getByte(h,8+12);
 bpc_ = getByte(h,8+13);
 if (mode_ == 3) start_ += 4*256; // start following color table
 }
 return valid_ ;
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

void PGFImage::accept(Visitor& visitor)
{
 // Ensure that this is the correct image type
 if (!valid()) {
 std::ostringstream os ; os << "expected " << format_ ;
 Error(kerInvalidFileFormat,io().path(),os.str());
 }
 std::string msg = stringFormat("headersize = %d, width x height = %d x %d levels,comp = %d,%d "
 "bpp,colors = %d,%d mode,bpc = %d,%d start = %d"
 ,headersize_,width_,height_,levels_,comp_,bpp_,colors_,mode_,bpc_,
 visitor.visitBegin(*this,msg); // tell the visitor
 PngImage(io(),start_,this->headersize_).accept(visitor);
 visitor.visitEnd (*this); // tell the visitor
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14

C++

C++

2020-Dec-6, 15:01IMaEA

Page 58 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

Adobe publish the following: https://www.adobe.com/devnet-apps/photoshop/fileformatashtml/.

PSDImage::valid() is straightforward:

PSD PhotoShop Document

https://www.adobe.com/devnet-apps/photoshop/fileformatashtml/

2020-Dec-6, 15:01IMaEA

Page 59 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

PSDImage::accept() is easy. As the header has been validated, all it has to do is to run the link-list of 3
resources (Color, Image and Layer/Mask). However, because the Metadata is all stored in the “Image
Resources”, I also navigate that structure and call visit8BIM().

There is a ‘name’ in the data structure which is stored as a Pascal string which is an array of up to 257 bytes.
The first byte in the length of the string. The string is not null terminated. The string “\0\0” is the empty
string. I think this is a software relic as my test file has the empty string for every 8BIM record.

I’ve chosen to treat the 8BIM chain as a file type. You will never find this as a file on your computer, however
you will find this record type in JPEG files in App13 with signature PhotoShop 3.0.

bool PSDImage::valid()
{
 if (!valid_) {
 endian_ = keBig ;
 IoSave restore(io(),0);
 DataBuf h(4); io_.read(h);
 uint16_t version = io_.getShort(endian_);

 if (h.begins("8BPS") && version == 1 && io_.getLong(endian_) == 0 && io_.getShort
 start_ = 26;
 format_ = "PSD";
 valid_ = true;
 }
 ch_ = io_.getShort(endian_);
 width_ = io_.getLong (endian_);
 height_ = io_.getLong (endian_);
 bits_ = io_.getShort(endian_);
 col_ = io_.getLong (endian_);
 header_ = " address | length | data";
 }
 return valid_ ;
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

C++

2020-Dec-6, 15:01IMaEA

Page 60 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

ReportVisitor::visitResource() is called 3 times and reports the address,length and data.

And to complete the story, the reporter for 8BIM is quite simple.

I haven’t bothered to implement options -pX (XMP), -pC (ICC Color Profile) or -pI (IPTC) although it’s very
simple to implement.

void PSDImage::accept(Visitor& visitor)
{
 // Ensure that this is the correct image type
 if (!valid()) {
 std::ostringstream os ; os << "expected " << format_ ;
 Error(kerInvalidFileFormat,io().path(),os.str());
 }
 std::string msg = stringFormat("#ch = %d, width x height = %d x %d, "
 "bits/col = %d/%d",ch_,width_,height_,bits_,col_);
 visitor.visitBegin(*this,msg); // tell the visitor

 IoSave restore(io_,0) ;
 DataBuf lBuff(4);
 uint64_t address = start_ ;
 for (uint16_t i = 0 ; i <=2 ; i++) {
 io().seek(address);
 uint32_t length = io_.getLong(endian());
 visitor.visitResource(io_,*this,address);
 Io bim(io_,address+4,length);
 C8BIM c8bim(bim);
 c8bim.accept(visitor);
 address += length + 4 ;
 }

 visitor.visitEnd (*this); // tell the visitor
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

void ReportVisitor::visitResource(Io& io,Image& image,uint64_t address)
{
 IoSave restore(io,address);
 uint32_t length = io.getLong(image.endian());
 DataBuf buff(length > 40 ? 40 : length);
 io.read(buff);
 out() << indent() << stringFormat("%8d | %6d | ",address,length) << buff.binaryToString
}

1
2
3
4
5
6
7
8

void ReportVisitor::visit8BIM(Io& io,Image& image,uint32_t offset
 ,uint16_t kind,uint32_t len,uint32_t data,uint32_t pad,DataBuf& b)
{
 std::string tag = ::tagName(kind,psdDict,40,"PSD");
 if (printTag(tag)) {
 out() << indent()
 << stringFormat(" %8d | %#06x | %-28s | %4d | %2d+%1d | "
 ,offset,kind,tag.c_str(),len,data,pad)
 << b.binaryToString()
 << std::endl;
 }
}

1
2
3
4
5
6
7
8
9
10
11
12

C++

C++

C++

2020-Dec-6, 15:01IMaEA

Page 61 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

TOC

2020-Dec-6, 15:01IMaEA

Page 62 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

I found this useful description: https://libopenraw.freedesktop.org/formats/raf. I don’t recognise the format
of the embedded CFA. I believe CFA is Color Filter Array.

Most of the metadata is contained in the embedded JPEG. However there is metadata in the embedded TIFF.
This is discussed here: https://github.com/Exiv2/exiv2/issues/1402.

The MakerNote in the embedded JPEG in a RAF has a 12 byte header followed by an IFD. The 12 bytes header
is the ascii string FUJIFILM followed by the bytes 0x0c 0 0 0. Perhaps it’s a coincidence that that 0x0c00000000
is bigEndian ‘12’. It’s possible that the header is “FUJIFILM"long and long is the offset to the IFD. As RAF is a
big endian file, that’s possible. The code in both Exiv2 and tvisitor however simply skips the 12 byte header
and reads the IFD.

TOC

RAF Fujifilm RAW

https://libopenraw.freedesktop.org/formats/raf/
https://github.com/Exiv2/exiv2/issues/1402

2020-Dec-6, 15:01IMaEA

Page 63 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

There is a discussion of Raw Image Formats here: https://en.wikipedia.org/wiki/Raw_image_format

RW2 is effectively Tiff, however Panasonic:

1. Put their keys into the top level dictionary.
2. Use 0x55 = ‘U’ = 85 in the ‘magic’ header.

We deal with those differences in TiffImage::valid() as follows:

TOC

RW2 Panasonic RAW

914 rmills@rmillsmbp:~/gnu/exiv2/team/book/build $ dmpf count=20 ~/Downloads/RAW_PANASONIC_FZ8.RAW
 0 0: IIU_.___#_._._.___02 -> 49 49 55 00 08 00 00 00 23 00 01 00 07 00 04 00 00 00 30 32
915 rmills@rmillsmbp:~/gnu/exiv2/team/book/build $

1
2
3

 valid_ = (magic_==42||magic_==43||magic_==85) && (c == C) && (c=='I'||c=='M') && bytesize
 // Panosonic have augmented tiffDict with their keys
 if (magic_ == 85) {
 setMaker(kPano);
 for (TagDict::iterator it = panoDict.begin() ; it != panoDict.end() ; it++) {
 if (it->first != ktGroup) {
 tiffDict[it->first] = it->second;
 }
 }
 }

1
2
3
4
5
6
7
8
9
10

Bash

C++

https://en.wikipedia.org/wiki/Raw_image_format

2020-Dec-6, 15:01IMaEA

Page 64 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

The TGA file format is documented here:http://www.ludorg.net/amnesia/TGA_File_Format_Spec.html

There is no Exiv2, xmp, ICC or IPTC metadata in a TGA file.

TOC

TGA Truevision Targa

http://www.ludorg.net/amnesia/TGA_File_Format_Spec.html

2020-Dec-6, 15:01IMaEA

Page 65 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

The Windows Bitmap Format "Bimp” has been around in Windows forever. It may even have been in
Windows 1.0. For sure, it was there when I started to working with Windows 3.0 in 1991. It’s not a container.
It’s a few fields of data and lots of pixels!

BMP is often referred to as a “device independant bitmap” because it’s not designed for any physical device. It
is the responsibility of the device or printer driver to render the image. Windows device drivers are required to
implement the GDI (Graphical Device Interface).

The first 4 bytes of the BITMAP (following the 14 byte file BITMAPFILE header) is the length of BITMAP. As
well as being useful for navigating the file, this is effectively the BITMAP version. In the Windows SDK, they
call it bmType. The last time I looked at the structure of a BMP (Windows 95) it believe it was 42 bytes. On
Windows 10 it’s now 124.

From a metadata standpoint, there’s almost nothing interesting in a BMP. I was surprised to discover that the
latest version (BITMAPV5) can store an ICC profile and has an alpha channel bitmask. Perhaps a future
version will include XMP and Exif metadata.

A BMP can be rendered with transparency. The GDI has a method TransparentBlt() in which one colour value
is defined to be “transparent”. This method of supporting transparency is the responsibility of the application
code and not defined in the file itself.

BMP Windows Bitmap

2020-Dec-6, 15:01IMaEA

Page 66 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

Before moving on from BMP, I’d like to say something about the flexibility of the BMP format. You can have
different colours depths and the image can have indexed color. In this format, a table of up to 256 colours can
be defined and the value of a pixel is the index and not the colour itself. It’s interesting to see that Microsoft
have been working with this for 40 years, occasionally upgrading, and have never broken backwards
compatibility. Everybody would benefit from camera manufacturers adopting a similar approach to file
formats.

TOC

2020-Dec-6, 15:01IMaEA

Page 67 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

Component URL

Gif Specification https://www.w3.org/Graphics/GIF/spec-gif89a.txt

LibGif https://sourceforge.net/projects/giflib/

LibGif Man Pages https://www.mankier.com/1/gifbuild

Adobe XMPsdk https://github.com/adobe/XMP-Toolkit-SDK.git

WikiPedia GIF https://en.wikipedia.org/wiki/GIF

I built GifLib 5.1.1 on macOS . 5.2.1 complained about the option linker option -soname and refused to link!

I followed the discussion on the WikiPedia site and created a 3x2 pixel gif with MSPaint on Windows-10 which
I’ve inspected with the giflib/. The file gif.gif is in the book resources at: svn://dev.exiv2.org/svn/team/book

GIF Graphics Image Format

https://www.w3.org/Graphics/GIF/spec-gif89a.txt
https://sourceforge.net/projects/giflib/
https://www.mankier.com/1/gifbuild
https://github.com/adobe/XMP-Toolkit-SDK.git
https://en.wikipedia.org/wiki/GIF

2020-Dec-6, 15:01IMaEA

Page 68 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

This is supported by Gif89a files and documented by Adobe in XMPSpecificationPart3.pdf on page 17 of the
2010 edition. At present I don’t have a sample GIF with embedded XMP. I don’t know if Exiv2 supports
GIF/XML.

TOC

.../book $ gifbuild -d -v gif.gif
#
GIF information from gif.gif
screen width 2
screen height 3
screen colors 256
screen background 0
pixel aspect byte 0

screen map
 sort flag off
 rgb 000 000 000
 rgb 000 000 051
.... color table entries
 rgb 000 000 000
end

graphics control
 disposal mode 0
 user input flag off
 delay 0
 transparent index 252
end

image # 1
image left 0
image top 0
image bits 2 by 3 hex
9993
9300
fbe0

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

.../book$ dmpf gif.gif
 0 0: GIF89a._._._______3__f__.__.__._ -> 47 49 46 38 39 61 02 00 03 00 f7 00 00 00 00 00 00 00 33 00 00 66 00 00 99 00 00 cc 00 00 ff 00
 G I F 8 9 a <-W-> <-H-> <
 0x20 32: +__+3_+f_+._+._+._U__U3_Uf_U._U. -> 2b 00 00 2b 33 00 2b 66 00 2b 99 00 2b cc 00 2b ff 00 55 00 00 55 33 00 55 66 00 55 99 00 55 cc
...
 0x300 768: .____________!...__._,____._.__. -> ff 00 00 00 00 00 00 00 00 00 00 00 00 21 f9 04 01 00 00 fc 00 2c 00 00 00 00 02 00 03 00 00 08
 0x320 800: ._3M..`..._; -> 09 00 33 4d 9a 04 60 1f b8 80 00 3b

1
2
3
4
5
6
7

XMP in Gif

Bash

Bash

2020-Dec-6, 15:01IMaEA

Page 69 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

Sidecar files are “Raw” XMP. They are used for several purposes such as to provide XMP support for files for
which there is no define standard encoding. For example, if you use less common legacy formats such as Sun
Raster, the simplest way to provide XMP support is to use a sidecar. Conventionally for a file such as foo.ras,
sidecar will have the foo.xmp

Sidecar files are sometimes used to store application data. For example, the Adobe Camera Raw Convertor
installs LensProfiles .lcp files in /Library/Application Support/Adobe/CameraRaw/LensProfiles/ (on
macOS).

TOC

SIDECAR Xmp Sidecars

2020-Dec-6, 15:01IMaEA

Page 70 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

Exif is the most important of the metadata containers. However others exist and are supported by Exiv2:

Type Definition Comment

EXIF EXchangeable Image Format
Japanese Electronic Industry Development
Association Standard

IPTC
International Press
Telecommunications Council

Press Industry Standard

Xmp Extensible Metadata Platform Adobe Standard

ICC International Color Consortium Industry Consortium for Color Handling Standards

TOC

2 Metadata Standards

2020-Dec-6, 15:01IMaEA

Page 71 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

EXIF = Exchangeable image file format. Exif is the largest and most commonly used metadata standard. The
standard is defined by JEITA which is the Japanese Association of Camera Manufacturers. Exif metadata is
embedded in almost all images captured by cameras, phones and other “smart” devices. Exif has tags for
Maker, Model, Aperture and many other settings. Exiv2 supports the Exif 2.32 Standard. Exiv2 knows the
definition of about 6000 tags. Exif however is not extensible. Over the years, tags have been added for topics
such as GPS, Lens and Time Zone.

To enable the manufacturer to store both proprietary and non-standard data, the MakerNote Tag is defined.
Usually the Manufacturer will write a TIFF Encoded record into the MakerNote. Exiv2 can reliably read and
rewrite Manufacturer’s MakerNotes. The implementation of this in Exiv2 is the outstanding work of Andreas
Huggel.

In order to understand the Exif Standard, it’s useful to understand its relationship with other standards:

Name Description URL

TIFF 6.0
Adobe Standard. It defines the structure of a Tiff File
(the IFD) and tags for image properties such as
ImageWidth and ImageHeight

TIFF6.pdf

TIFF‑EP
ISO Standard. TIFF for Electronic Photographs extends
TIFF 6 to provide tags for Photographs. For example:
IPTC/NAA and ISOSpeedRatings

TAG2000-22_DIS12234-2.pdf

DNG
Adobe Standard. DNG extends TIFF-EP with tags for
Camera Raw Processing. For example:
CameraCalibration

dng_spec_1.5.0.0.pdf

Exif JEITA Standard. CIPA_DC_008_EXIF_2019.pdf

XMP
Adobe Standard. XMP is written in XML. For now,
we’re only concerned with embedding this in Tiff. XMPSpecificationPart3.pdf

ICC Profile
International Color Consortium Standard. The
specification defines both the ICC Profile Format and
embedding standards.

ICC1v43_2010-12.pdf

IPTC ITPC Standard.
IPTC-PhotoMetadata-
201407_1.pdf

2.1 Exif Metadata

Exif Standard Tags

https://www.adobe.io/content/dam/udp/en/open/standards/tiff/TIFF6.pdf
https://clanmills.com/exiv2/TAG2000-22_DIS12234-2.pdf
https://wwwimages2.adobe.com/content/dam/acom/en/products/photoshop/pdfs/dng_spec_1.5.0.0.pdf
https://fotomagazin.hu/wp-content/uploads/2020/05/CIPA_DC_008_EXIF_2019.pdf
https://www.adobe.io/content/dam/udp/en/open/standards/tiff/TIFF6.pdf
http://www.color.org/specification/ICC1v43_2010-12.pdf
https://www.iptc.org/std/photometadata/specification/IPTC-PhotoMetadata-201407_1.pdf

2020-Dec-6, 15:01IMaEA

Page 72 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

Specification IFD Section Tag Examples

Exif 4.6.3 IFD0 Offset to Exif and GPS IFDs ExifTag, GPSTag

Exif 4.6.4 IFD0

Image data structure
Make
Image data location
Image data characteristics
Other Tags

ImageWidth, ImageHeight
Make
StripOffsets, RowsPerStrip
TransferFunction, WhitePoint
ImageDescription, DateTime

ICC
XMP
TIFF‑EP

IFD0

ICC Profile
XMP
IPTC/NAA
See ICC/XMP/IPTC below

InterColorProfile
XMLPacket
IPTCNAA

Exif 4.6.5 Exif IFD

Exif Version
Image Data Characteristics
Image Configuration
User or Manufacturer
Information
Related File Information
Date and Time
Picture Conditions
Shooting Situation
Other

ExifVersion
ColorSpace, Gamma
ComponentsConfiguration,
CompressedBitsPerPixel
UserComment, MakerNote See
MakerNote below
RelatedSoundFile
DateTimeOriginal
Aperture, FocalLength
Temperature, CameraElevationAngle
LensSpecification, CameraOwnerName

Exif 4.6.6 GPS IFD GPS Data GPSSatellites, GPSLatitude

Exif 4.6.7
Interop
IFD

See Interop below

Interop The Exif standard says: The Interoperability structure of Interoperability IFD is same as TIFF defined IFD
structure but does not contain the image data characteristically compared with normal TIFF IFD.

MakerNote The Exif standard does not define the structure of the MakerNote. In practice, all manufacturers
store their private data as a short header followed by an IFD or embedded TIFF file. The contents of the
makernote headers are documented: https://exiv2.org/makernote.html. There is an index to every Exif (and
IPTC and XMP and MakerNote) tag supported by Exiv2 at https://exiv2.org/metadata.html. For example the
Canon MakerNote is documented: https://exiv2.org/tags-canon.html.

ICC/XMP/IPTC The tags InterColorProfile, XMLPacket and IPTCNAA are usually only found in Tiff files.
Other formats such as JPEG, PNG, JP2 use different mechanisms to embed the data. How the data is
embedded is defined in the ICC Profile Specification and discussed in the Image File Formats in Chapter 1.

Structure of Exif Metadata

https://exiv2.org/makernote.html
https://exiv2.org/metadata.html
https://exiv2.org/tags-canon.html

2020-Dec-6, 15:01IMaEA

Page 73 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

Exif metadata is stored as an embedded TIFF. So, every tag has an array of values. The array is homogeneous.
Every element of the array is of the same type. So, there can be an array of ASCII values (for strings), or an
array of Shorts (for image dimensions). Foreign data such as IPTC, ICC Profiles and MakerNotes are typically an
array of “UNDEFINED” which are binary data.

There are 3 types of single-byte arrays in Exif. An array of ASCII values should by 7-bit ascii values with a
trailing null. An array of UNDEFINED is usually use to define binary data. An array of BYTE values is a byte-
stream of uint8_t and typically used by XMPPacket to store XML.

There are only 3 types of string in Exif which use CharSet encoding. They are UserComment,
GPSAreaInformation and GPSProcessingMethod

The structure of those tags is defined on page34 of the Exiv2-2 Specification. Three standards are supported by
the Specification and they are “ASCII, JIS and UNICODE”. Provision is a made for “Undefined” which
presumably leaves it to the application to interpret the data.

Character Set Encoding in Strings

$ taglist ALL | csv - | grep '\[Comment\]'
[Photo.UserComment] [37510] [0x9286] [Photo] [Exif.Photo.UserComment] [Comment] [A tag ...]
[GPSInfo.GPSProcessingMethod] [27] [0x001b] [GPSInfo] [Exif.GPSInfo.GPSProcessingMethod] [Comment] [A ...]
[GPSInfo.GPSAreaInformation] [28] [0x001c] [GPSInfo] [Exif.GPSInfo.GPSAreaInformation] [Comment] [A ...]
$

1
2
3
4
5

2020-Dec-6, 15:01IMaEA

Page 74 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

These tags are discussed and explained in the Exiv2 man page. The code in tvisitor.cpp does not deal with
CharSet decoding and reports the binary values of the bytes.

The tag XMLPacket is normally an array of BYTE values. The encoding of such a string defaults to UTF-8 and
can be defined in the XML Processing Instruction. For an Exif/Tiff perspective, the count is the number of
bytes used to store the string. The length of the decoded string may differ.

Before we get into the Exiv2 code, let’s look at the simpler python TIFF/Exif library.
https://github.com/Moustikitos/tyf

You will also need to install PIL:

This is a library and I’ve constructed a program to reveal the Exif metadata.

Inspecting the Values of Exif Data

$ sudo python3 -m pip install Pillow
$ git clone https://github.com/Moustikitos/tyf
$ cd tyf
$ sudo python3 setup.py install

1
2
3
4

#!/usr/bin/env python3

import Tyf
import os
import sys

import urllib.request
from io import BytesIO
from PIL import Image

##
#
def dumpTags(ifd):
 bDumpTags = True
 bGenerateMap = False

 if bDumpTags:
 for tag in ifd:
 V=tag[1]
 v=str(V)
 if type(V)==type(''):
 v='"'+v+'"'
 if len(v) > 30:
 v = v[0:26] + '.. '
 t=str(type(V))
 t=t[8:len(t)-2]
 if t == 'bytes':
 t=str(len(V)) + ' ' + t
 elif t == 'str':
 t=str(len(V))
 if len(t) > 30:
 t = t[0:26]+'.. '

 t='('+t+')'

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

Bash

Python

https://github.com/Moustikitos/tyf

2020-Dec-6, 15:01IMaEA

Page 75 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

Download from https://clanmills.com/Stonehenge.jpg and https://clanmills.com/Stonehenge.tif

 t='('+t+')'

 print('%s -> %s %s' % (tag[0], v , t))

##
#
def main(argv):
 """main - main program of course"""

 image = Tyf.open(argv[1])
 # help(jpg)

 if str(type(image)) == "<class 'Tyf.TiffFile'>":
 dumpTags(image[0])
 elif str(type(image)) == "<class 'Tyf.JpegFile'>":
 dumpTags(image.ifd0)
 else:
 print("unknown image type " + str(type(image)))

if __name__ == '__main__':
 main(sys.argv)

That's all Folks
##

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

https://clanmills.com/Stonehenge.jpg
https://clanmills.com/Stonehenge.tif

2020-Dec-6, 15:01IMaEA

Page 76 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

Data’s similar. The order is different. Good news is that the commands $ exiv2 -pe ~/Stonehenge.jpg and $
exiv2 -pe ~/Stonehenge.tif produce similar data in the same order. We’d hope so as both commands are
reading the same embedded Exif metadata. The way in which the Exif is embedded in Tiff and JPG is different,
however the Exif metadata is effectively the same.

TOC

$ ~/bin/mdump.py ~/Stonehenge.jpg $ ~/bin/mdump.py ~/Stonehenge.tif
Make -> "NIKON CORPORATION" (17) ImageLength -> 1 (int)
Model -> "NIKON D5300" (11) BitsPerSample -> (8, 8, 8, 8)
Orientation -> 1 (int) Compression -> 1 (int)
XResolution -> 300.0 (float) PhotometricInterpretation -> 2
YResolution -> 300.0 (float) FillOrder -> 1 (int)
ResolutionUnit -> 2 (int) ImageDescription -> "Classic V"
Software -> "Ver.1.00 " (9) Make -> "NIKON CORPORATION" (1
DateTime -> 2015-07-16 20:25:28 (datetim Model -> "NIKON D5300" (11)
YCbCrPositioning -> 1 (int) StripOffsets -> 901 (int)
Exif IFD -> 222 (int) Orientation -> 1 (int)
...
MakerNote -> b'Nikon\x00\x02\x11\x00\x00' ExposureTime -> 0.0025 (float)
UserComment -> FNumber -> 10.0 (float)
SubsecTime -> "00" (2) ExposureProgram -> 0 (int)
SubsecTimeOriginal -> "00" (2) ISOSpeedRatings -> 200 (int)
SubsecTimeDigitized -> "00" (2) ExifVersion -> b'0230' (4 byte
FlashpixVersion -> b'0100' (4 bytes) DateTimeOriginal -> 2015-07-16
ColorSpace -> 1 (int) DateTimeDigitized -> 2015-07-1
PixelXDimension -> 6000 (int) ComponentsConfiguration ->
PixelYDimension -> 4000 (int) CompressedBitsPerPixel -> 2.0
Interoperability IFD -> 4306 (int) ExposureBiasValue -> (0, 1) (t
SensingMethod -> 2 (int) MaxApertureValue -> 4.3 (float
FileSource -> b'\x03' (1 bytes) MeteringMode -> 5 (int)
SceneType -> b'\x01' (1 bytes) LightSource -> 0 (int)
CFAPattern -> b'\x02\x00\x02\x00\x00\x01' Flash -> 16 (int)
CustomRendered -> 0 (int) FocalLength -> 44.0 (float)
ExposureMode -> 0 (int) UserComment ->
...
GPSLatitudeRef -> 1 (int) WhiteBalance -> 0 (int)
GPSLatitude -> 51.17828166666666 (float) DigitalZoomRatio -> 1.0 (float
GPSLongitudeRef -> -1 (int) FocalLengthIn35mmFilm -> 66 (i
GPSLongitude -> 1.8266399999999998 (floa SceneCaptureType -> 0 (int)
GPSAltitudeRef -> -1 (int) GainControl -> 0 (int)
GPSAltitude -> 97.0 (float) Contrast -> 0 (int)
GPSTimeStamp -> 14:38:55 (datetime.time) Saturation -> 0 (int)
GPSSatellites -> "09" (2) Sharpness -> 0 (int)
GPSMapDatum -> "WGS-84 " (16) SubjectDistanceRange -> 0 (int
GPSDateStamp -> 2015-07-16 00:00:00 (dat ImageUniqueID -> "090caaf..."
 GPSLatitudeRef -> 1 (int)
... GPSLatitude -> 51.178280555555

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

Bash

2020-Dec-6, 15:01IMaEA

Page 77 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

XMP is an Adobe initiative to provide a comprensive and eXtendable Metadata frame to a wide range of
documents.

You can create Bag, Seq or Struct of metadata. An “XmpBag” is a set of key/value pairs and are represented by
XML attributes. An “XmpSeq” is a an array of metadata similar to a JavaScript or Python Array. It’s
represented by an XML list and can be accessed by index. An XmpStruct is a set of keys to trees of metadata
rathen like a JavaScript or Python Object or Python.

Here are a couple of discussions about XMP on GitHub and Redmine.
https://github.com/Exiv2/exiv2/issues/1254 and https://dev.exiv2.org/boards/3/topics/2016.

Exiv2 provides a veneer over Adobe XMPsdk that makes it quite easy to work with XMP. As XMP is
eXtensible, you are more-or-less free to create arbitrary trees of metadata which conform to the RDF schema. I
strongly recommend however that applications emulate the XMP generated by Adobe Applications as that
promotes better interoperability.

Exiv2 is not a metadata policeman. You are provided with tools to modify metadata. As Jabba said in Star
Wars: “With great power comes great responsibility.”. Use the tools wisely. Learn the ways of the force!

I have taken the XMP example from this web-site and simplified it a little into the file xmp.xmp
https://en.wikipedia.org/wiki/Extensible_Metadata_Platform

2.2 XMP Metadata

<?xpacket begin="?" id="W5M0MpCehiHzreSzNTczkc9d"?>
 < xmpmeta x="adobe:ns:meta/" xmptk="Adobe XMP Core 5.4-c002 1.000000, 0000/00/00-00:00:00 x: xmlns: x:

1
2

Markup

https://github.com/Exiv2/exiv2/issues/1254
https://dev.exiv2.org/boards/3/topics/2016
https://en.wikipedia.org/wiki/Extensible_Metadata_Platform

2020-Dec-6, 15:01IMaEA

Page 78 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

You can add this directly into a file as follows:

I find the structure easier to understand in JSON, which can be generated with the command $ exiv2json

 < RDF rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
 < Description about=""
 xmp="http://ns.adobe.com/xap/1.0/">
 < CreatorTool>Picasa</ CreatorTool>
 </ Description>
 < Description about=""
 mwg-rs="http://www.metadataworkinggroup.com/schemas/regions/"
 stDim="http://ns.adobe.com/xap/1.0/sType/Dimensions#"
 stArea="http://ns.adobe.com/xmp/sType/Area#">
 < Regions parseType="Resource">
 < AppliedToDimensions parseType="Resource">
 < w>912</ w>
 < h>687</ h>
 < unit>pixel</ unit>
 </ AppliedToDimensions>
 < RegionList>
 < Bag>
 < li parseType="Resource">
 < Area parseType="Resource">
 < x>0.680921052631579</ x>
 < y>0.3537117903930131</ y>
 < h>0.4264919941775837</ h>
 < w>0.32127192982456143</ w>
 </ Area>
 </ li>
 </ Bag>
 </ RegionList>
 </ Regions>
 </ Description>
 </ RDF>
 </ xmpmeta>
<?xpacket end="w"?>

rdf: xmlns:
rdf: rdf:

xmlns:
xmp: xmp:

rdf:
rdf: rdf:

xmlns:
xmlns:
xmlns:

mwg-rs: rdf:
mwg-rs: rdf:

stDim: stDim:
stDim: stDim:
stDim: stDim:

mwg-rs:
mwg-rs:

rdf:
rdf: rdf:

mwg-rs: rdf:
stArea: stArea:
stArea: stArea:
stArea: stArea:
stArea: stArea:

mwg-rs:
rdf:

rdf:
mwg-rs:

mwg-rs:
rdf:

rdf:
x:

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

$ curl -LO http://clanmills.com/Stonehenge.jpg
$ cat xmp.xmp | exiv2 -iX- ~/Stonehenge.jpg
$ exiv2 -px Stonehenge.jpg
980 rmills@rmillsmbp:~/temp $ exiv2 -px Stonehenge.jpg
Xmp.xmp.CreatorTool XmpText 6 Picasa
Xmp.mwg-rs.Regions XmpText 0 type="Struct"
Xmp.mwg-rs.Regions/mwg-rs:AppliedToDimensions XmpText 0 type="Struct"
Xmp.mwg-rs.Regions/mwg-rs:AppliedToDimensions/stDim:w XmpText 3 912
Xmp.mwg-rs.Regions/mwg-rs:AppliedToDimensions/stDim:h XmpText 3 687
Xmp.mwg-rs.Regions/mwg-rs:AppliedToDimensions/stDim:unit XmpText 5 pixel
Xmp.mwg-rs.Regions/mwg-rs:RegionList XmpText 0 type="Bag"
Xmp.mwg-rs.Regions/mwg-rs:RegionList[1] XmpText 0 type="Struct"
Xmp.mwg-rs.Regions/mwg-rs:RegionList[1]/mwg-rs:Area XmpText 0 type="Struct"
Xmp.mwg-rs.Regions/mwg-rs:RegionList[1]/mwg-rs:Area/stArea:x XmpText 17 0.680921052631579
Xmp.mwg-rs.Regions/mwg-rs:RegionList[1]/mwg-rs:Area/stArea:y XmpText 18 0.3537117903930131
Xmp.mwg-rs.Regions/mwg-rs:RegionList[1]/mwg-rs:Area/stArea:h XmpText 18 0.4264919941775837
Xmp.mwg-rs.Regions/mwg-rs:RegionList[1]/mwg-rs:Area/stArea:w XmpText 19 0.32127192982456143

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

Bash

2020-Dec-6, 15:01IMaEA

Page 79 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

Stonehenge.jpg

You create XMP metadata with the syntax:

Adobe XMPsdk isn’t easy to understand. As I have never used it outside of Exiv2, my knowledge is limited.
Exiv2 however enables you to insert, modify and delete simple values, Seq and Struct objects and Bags. You
can create this XMP structure about using the Exiv2 command-line program as follows:

Step 1 Get an image and delete all XMP metadata:

{
 "Xmp": {
 "xmp": {
 "CreatorTool": "Picasa"
 },
 "mwg-rs": {
 "Regions": {
 "mwg-rs": {
 "AppliedToDimensions": {
 "stDim": {
 "w": "912",
 "h": "687",
 "unit": "pixel"
 }
 },
 "RegionList": [
 {
 "mwg-rs": {
 "Area": {
 "stArea": {
 "x": "0.680921052631579",
 "y": "0.3537117903930131",
 "h": "0.4264919941775837",
 "w": "0.32127192982456143"
 } } } }
]
 } }
 },
 "xmlns": {
 "AppliedToDimensions": "",
 "Area": "",
 "Regions": "",
 "mwg-rs": "http:\/\/www.metadataworkinggroup.com\/schemas\/regions\/",
 "xmp": "http:\/\/ns.adobe.com\/xap\/1.0\/"
 }
 }
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

$ exiv2 -M'set Xmp.namespace.Key value' path1

JavaScript

Bash

2020-Dec-6, 15:01IMaEA

Page 80 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

Step 2 Create a simple XMP Property

Step 3 Create nested Structures for Regions and Region:

918 rmills@rmillsmbp:~/temp $ curl -LO http://clanmills.com/Stonehenge.jpg
 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 6599k 100 6599k 0 0 1806k 0 0:00:03 0:00:03 --:--:-- 1806k
919 rmills@rmillsmbp:~/temp $ exiv2 -pX Stonehenge.jpg | xmllint -pretty 1 -
<?xml version="1.0"?>
<?xpacket begin=" " id="W5M0MpCehiHzreSzNTczkc9d"?>
<x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="XMP Core 4.4.0-Exiv2">
 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
 <rdf:Description xmlns:xmp="http://ns.adobe.com/xap/1.0/" xmlns:dc="http://purl.org/dc/elements/1.1/"
 <dc:description>
 <rdf:Alt>
 <rdf:li xml:lang="x-default">Classic View</rdf:li>
 </rdf:Alt>
 </dc:description>
 </rdf:Description>
 </rdf:RDF>
</x:xmpmeta>
<?xpacket end="w"?>
920 rmills@rmillsmbp:~/temp $ exiv2 -dX Stonehenge.jpg
921 rmills@rmillsmbp:~/temp $ exiv2 -pX Stonehenge.jpg | xmllint -pretty 1 -
-:1: parser error : Document is empty

^
925 rmills@rmillsmbp:~/temp $

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

$ exiv2 -M'set Xmp.xmp.CreatorTool Picasa' Stonehenge.jpg
$ exiv2 -pX Stonehenge.jpg | xmllint -pretty 1 -
<?xml version="1.0"?>
<?xpacket begin=" " id="W5M0MpCehiHzreSzNTczkc9d"?>
<x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="XMP Core 4.4.0-Exiv2">
 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
 <rdf:Description xmlns:xmp="http://ns.adobe.com/xap/1.0/" rdf:about="" xmp:CreatorTool
 </rdf:RDF>
</x:xmpmeta>
<?xpacket end="w"?>

1
2
3
4
5
6
7
8
9
10

Bash

Bash

2020-Dec-6, 15:01IMaEA

Page 81 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

Step 4 Create a bag with Struct of Areas:

The Adobe XMPsdk is available here: https://github.com/adobe/XMP-Toolkit-SDK.git. In addition to the
code, there is documentation, CMake build scripts and sample applications. The current documentation is:

$ exiv2 -M'set Xmp.mwg-rs.Regions XmpText type=Struct' \
 -M'set Xmp.mwg-rs.Regions/mwg-rs:AppliedToDimensions XmpText type=Struct' \
 -M'set Xmp.mwg-rs.Regions/mwg-rs:AppliedToDimensions/stDim:w 912' Stonehenge.jpg
$ exiv2 -pX Stonehenge.jpg | xmllint -pretty 1 -
<?xml version="1.0"?>
<?xpacket begin=" " id="W5M0MpCehiHzreSzNTczkc9d"?>
<x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="XMP Core 4.4.0-Exiv2">
 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
 <rdf:Description xmlns:xmp="http://ns.adobe.com/xap/1.0/" xmlns:mwg-rs="http://www.metadataworkinggroup.com/schemas/regions/"
 <mwg-rs:Regions rdf:parseType="Resource">
 <mwg-rs:AppliedToDimensions stDim:w="912"/>
 </mwg-rs:Regions>
 </rdf:Description>
 </rdf:RDF>
</x:xmpmeta>
<?xpacket end="w"?>
$

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

$ exiv2 -M'set Xmp.mwg-rs.Regions/mwg-rs:RegionList XmpText type="Bag"' Stonehenge.jpg
$ exiv2 -M'set Xmp.mwg-rs.Regions/mwg-rs:RegionList[1] XmpText type="Struct"' Stonehenge.jpg
$ exiv2 -M'set Xmp.mwg-rs.Regions/mwg-rs:RegionList[1]/mwg-rs:Area/stArea:x XmpText 0.6809'
$ exiv2 -M'set Xmp.mwg-rs.Regions/mwg-rs:RegionList[1]/mwg-rs:Area/stArea:t XmpText 0.3537'
$ exiv2 -M'set Xmp.mwg-rs.Regions/mwg-rs:RegionList[1]/mwg-rs:Area/stArea:h XmpText 0.4264'
$ exiv2 -M'set Xmp.mwg-rs.Regions/mwg-rs:RegionList[1]/mwg-rs:Area/stArea:w XmpText 0.3212'
$ exiv2 -pX Stonehenge.jpg | xmllint -pretty 1 -
<?xml version="1.0"?>
<?xpacket begin=" " id="W5M0MpCehiHzreSzNTczkc9d"?>
<x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="XMP Core 4.4.0-Exiv2">
 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
 <rdf:Description xmlns:xmp="http://ns.adobe.com/xap/1.0/" xmlns:mwg-rs="..." xmlns:stArea
 <mwg-rs:Regions rdf:parseType="Resource">
 <mwg-rs:AppliedToDimensions stDim:w="912"/>
 <mwg-rs:RegionList>
 <rdf:Bag>
 <rdf:li rdf:parseType="Resource">
 <mwg-rs:Area stArea:x="0.6809" stArea:t="0.3537" stArea:h="0.4264" stArea:w
 </rdf:li>
 </rdf:Bag>
 </mwg-rs:RegionList>
 </mwg-rs:Regions>
 </rdf:Description>
 </rdf:RDF>
</x:xmpmeta>
<?xpacket end="w"?>```

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

Adobe XMPsdk

Bash

Bash

https://github.com/adobe/XMP-Toolkit-SDK.git

2020-Dec-6, 15:01IMaEA

Page 82 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

Adobe XMPsdk creates two libraries XMPFiles and XMPCore. XMPFiles implements extracting/inserting
XMP into various file many formats such as JPEG, PNG and TIFF. These are specified in
XMPSpecificationPart3. From an Exiv2 point of view, the file handling library is of little interest as Exiv2 has its
own file handlers.

The program tvisitor can extract XMP from image files. However it doesn’t use XMPsdk for several reasons.
Firstly, tvisitor knows how to navigate images and extract XMP without using the library XMPFiles. Secondly,
I want tvisitor.cpp to be a “one file” application with no dependencies. Thirdly, I have not studied XMPCore
and do not need to use it in tvisitor.cpp.

I have never built Adobe XMPsdk with Visual Studio, Cygwin, MinGW or UNIX. On macOS, I can build the
libraries, but not the samples.

Here’s how I have built XMPsdk on Ubuntu 20.04 with GCC 9.3.0

1. git clone https://github.com/adobe/XMP-TOOLKIT-SDK.git
2. git clone https://github.com/libexpat/libexpat.git
3. git clone https://github.com/madler/zlib.git
4. mkdir -p XMP-TOOLKIT-SDK/third-party/expat/lib ; cp -v zlib/*.? XMP-TOOLKIT-SDK/third-

party/zlib/
5. mkdir -p XMP-TOOLKIT-SDK/third-party/expat/lib ; cp -v libexpat/expat/lib/*.? XMP-TOOLKIT-

SDK/third-party/expat/lib
6. EDIT XMP-TOOLKIT-SDK/third-party/expat/lib/xmlparse.c and insert the line

#define XML_POOR_ENTROPY at the top of the file
7. mkdir -p XMP-TOOLKIT-SDK/tools/cmake/bin ; ln -s $(which cmake) XMP-TOOLKIT-

SDK/tools/cmake/bin/cmake
8. Apply the 2 fixes in https://github.com/adobe/XMP-Toolkit-SDK/issues/8
9. $ cd XML-TOOLKIT_SDK/build ; make DynamicRelease64

10. $ cd ../samples/build ; make DynamicRelease64

The following build artefacts are created on Linux.

550 rmills@rmillsmbp:~/gnu/github $ ls -l ~/Google\ Drive/PDFs/XMP/
total 9536
-rw-r--r--@ 1 rmills staff 311694 18 Sep 19:02 XMP-Toolkit-SDK-Overview.pdf
-rw-r--r--@ 1 rmills staff 192908 18 Sep 14:27 XMPAddendumProgrammersGuide.pdf
-rw-r--r--@ 1 rmills staff 244176 18 Sep 14:27 XMPFilesPluginSDK.pdf
-rw-r--r--@ 1 rmills staff 2683121 18 Sep 14:27 XMPProgrammersGuide.pdf
-rw-r--r--@ 1 rmills staff 383354 18 Sep 14:27 XMPSpecificationPart2.pdf
-rw-r--r--@ 1 rmills staff 1366689 18 Sep 14:27 XMPSpecificationPart3.pdf
551 rmills@rmillsmbp:~/gnu/github $

1
2
3
4
5
6
7
8
9

Building Adobe XMPsdk using Adobe’s build environments

Bash

https://github.com/adobe/XMP-Toolkit-SDK/issues/8

2020-Dec-6, 15:01IMaEA

Page 83 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

If using macOS to build the libraries, follow steps 1..7 above then use build/GenerateXMPToolkitSDK_mac.sh
to create the .xcodeproj files. You should be able to build the libraries with the following command:

I was unable to get to work with Xcode 12.1 because it complained about the SDK and absense of Command
line tools.

You can also build using the Xcode IDE by opening on of the generated projects such as
xcode/dynamic/intel64libcpp/XMPToolkitSDK64.xcodeproj. The default build is “Debug” and you can
change that to “Release” by editing the scheme which is presumably obvious to Xcode experts.

I had to manually download and install the Xcode command line tools for Xcode 12.1 and download and
install
/Applications/Xcode.app/Contents/Developer/Platforms/MacOSX.platform/Developer/SDKs/MacOSX10.14.sdk

Although it build from the Xcode IDE, I never succeeded in getting to build with the xcodebuild command.

The following libraries are built:

rmills@ubuntu:~/gnu/github/XMP-TOOLKIT-SDK$ find public/ -type f
public/libraries/i80386linux_x64/release/libXMPCore.so
public/libraries/i80386linux_x64/release/libXMPFiles.so
public/include/XMP.incl_cpp
public/include/XMP_Const.h
...
rmills@ubuntu:~/gnu/github/XMP-TOOLKIT-SDK$ find samples/target -type f
samples/target/i80386linux_x64/release/ModifyingXMPNewDOM
samples/target/i80386linux_x64/release/XMPIterations
samples/target/i80386linux_x64/release/XMPCoreCoverage
samples/target/i80386linux_x64/release/CustomSchema
samples/target/i80386linux_x64/release/XMPFilesCoverage
samples/target/i80386linux_x64/release/libXMPCore.so
samples/target/i80386linux_x64/release/DumpFile
samples/target/i80386linux_x64/release/DumpScannedXMP
samples/target/i80386linux_x64/release/CustomSchemaNewDOM
samples/target/i80386linux_x64/release/ReadingXMPNewDOM
samples/target/i80386linux_x64/release/ReadingXMP
samples/target/i80386linux_x64/release/libXMPFiles.so
samples/target/i80386linux_x64/release/ModifyingXMP
samples/target/i80386linux_x64/release/XMPCommand
samples/target/i80386linux_x64/release/DumpMainXMP
rmills@ubuntu:~/gnu/github/XMP-TOOLKIT-SDK$

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

$ xcodebuild -project xcode/dynamic/intel_64_libcpp/XMPToolkitSDK64.xcodeproj -configuration Release -target ALL_BUILD1

$ cd XMP-Toolkit-SDK/public/libraries/macintosh/intel_64_libcpp/Release
$ ls -l
drwxr-xr-x+ 5 rmills staff 160 10 Nov 11:32 XMPCore.framework
drwxr-xr-x+ 5 rmills staff 160 10 Nov 11:32 XMPFiles.framework
-rw-r--r--+ 1 rmills staff 26254464 10 Nov 11:21 libXMPCoreStatic.a
-rw-r--r--+ 1 rmills staff 34108944 10 Nov 11:21 libXMPFilesStatic.a

1
2
3
4
5
6

Using Adobe XMPsdk sample applications

Bash

Bash

Bash

2020-Dec-6, 15:01IMaEA

Page 84 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

There is a example in XMPProgrammersGuide.pdf page 73 of “Modifying XMP” in which the sample
application operates on samples/testfiles/Image1.jpg

Exiv2 has a copy of XMPsdk included in the code base and builds easily. Exiv2 uses Conan to build and link
other versions of XMPsdk. See README-CONAN.md

TOC

557 rmills@rmillsmbp:~/gnu/github/XMP-Toolkit-SDK $ exiv2 -px -g dc samples/testfiles/Image1.jpg
Xmp.dc.format XmpText 10 image/jpeg
Xmp.dc.description LangAlt 1 lang="x-default" Wilting Rose
Xmp.dc.creator XmpSeq 1 XMP SDK
Xmp.dc.title LangAlt 3 lang="x-default" An English title, lang
Xmp.dc.subject XmpBag 4 XMP, SDK, Test, File
558 rmills@rmillsmbp:~/gnu/github/XMP-Toolkit-SDK $

1
2
3
4
5
6
7

Building Adobe XMPsdk with Exiv2.

Bash

file:///Users/rmills/gnu/exiv2/team/book/README-CONAN.md

2020-Dec-6, 15:01IMaEA

Page 85 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

This standard is championed by the International Press Telecommunications Council and predates both Exif
and XMP.

The latest documentation (2014) is https://www.iptc.org/std/photometadata/specification/IPTC-
PhotoMetadata-201407_1.pdf The implementation of IPTC in Exiv2 was added before I joined the project and I
know very little about this matter. I’m pleased to say that the code is stable and reliable and I cannot recall any
user raising an issue about IPTC.

As is common in standards, there are competing and overlapping standards for metadata that reflect the
interests of their champions. So, Exif is for Cameras, XMP primarily for Application Programs, and IPTC is for
the Press Industry. Being a software engineer, I know very little about how people actually use metadata. I
belive IPTC preserves copyright and other high value resources as files move along the work-flow from the
origin to a magazine or newspaper. There is another parallel trade association called The Metadata Working
Group which works to define the use and meaning of metadata.
https://en.wikipedia.org/wiki/Metadata_Working_Group

There is a website that documents IPTC here: https://help.accusoft.com/ImageGear-
Net/v22.1/Windows/HTML/topic371.html

2.3 IPTC/IIM Metadata

https://www.iptc.org/std/photometadata/specification/IPTC-PhotoMetadata-201407_1.pdf
https://en.wikipedia.org/wiki/Metadata_Working_Group
https://help.accusoft.com/ImageGear-Net/v22.1/Windows/HTML/topic371.html

2020-Dec-6, 15:01IMaEA

Page 86 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

Name Section Typical Values

Envelope 1 Destination, DateSent

Application 2 Subject, ObjectName

Digital News Photo 3 PictureNumber, ICCInputColourProfile

Pre-Object Descriptor 7 MaxSubfileSize

Object Record 8 SubFile

Post-Object Descriptor 9 ConfirmedObjectDataSize

I don’t know why there are no sections 4, 5 or 6.

The Exiv2 support for IPTC is documented here: https://exiv2.org/iptc.html. I don’t know why Exiv2 does
not provide support for sections 3, 7, 8 or 9 as it could be easily added.

The code in tvisitor.cpp supports the following DataSets, all others are ignored.

Section Record Name

1. Envelope
0
5

90

RecordVersion
Destination
CharacterSet

2. Application
0

12
120

ModelVersion
Subject
Caption

There is considerably more information about DataSets in the Exiv2 code-base. I believe this defines the format
of data values such as short and long. In the discussion about MakerNotes, I added code to decode binary data
in tvisitor.cpp as this is a very important topic to understand in the Exiv2 code-base. I haven’t studied the
IPTC data to the same depth as I believe the tvisitor.cpp/IPTC support is sufficient to understand how IPTC
data is stored and decoded.

The IPTC data in a JPEG is stored in the APP13 PhotoShop segment, as we see here:

$ cp ~/Stonehenge.jpg .
$ exiv2 -M'set Iptc.Envelope.Destination Camberley Print Room' Stonehenge.jpg
$ exiv2 -M"set Iptc.Application2.Subject Robin's Book" Stonehenge.jpg
$ exiv2 -pi Stonehenge.jpg
Iptc.Envelope.ModelVersion Short 1 4
Iptc.Envelope.CharacterSet String 3 G
Iptc.Envelope.Destination String 20 Camberley Print Room
Iptc.Application2.RecordVersion Short 1 4
Iptc.Application2.Caption String 12 Classic View
Iptc.Application2.Subject String 12 Robin's Book

1
2
3
4
5
6
7
8
9
10

Bash

https://exiv2.org/iptc.html

2020-Dec-6, 15:01IMaEA

Page 87 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

CharacterSet is in the Envelope DataSection. CharacterSet is used by transmission protocols to transmit
resources via modems and other resources that were in common use when IPTC was first defined in the 1990s.
This field is set by the exiv2 convertors to “<esc>%G” to represent UTF-8. “<esc>” is ascii 0x01b (27)

I believe the data is defined in the Standard ISO/IEC 2022. The following web page has a section Interaction
with other coding systems in which I discovered the following table.
https://en.wikipedia.org/wiki/ISO%2FIEC_2022

As with Exif metdata, the IPTC data block can exceed 64k byte and this cannot be stored in a single JPEG
segment. Exiv2 has code to deal with this and is documented here: https://dev.exiv2.org/issues/0000533

In Tiff, IPTC data is contained in the following tag:

.../book $ tvisitor -pI ~/Stonehenge.jpg
STRUCTURE OF JPEG FILE (II): /Users/rmills/Stonehenge.jpg
 address | marker | length | signature
 0 | 0xffd8 SOI
 2 | 0xffe1 APP1 | 15288 | Exif__II*_.___._..._.___.___..._.___.___
 15292 | 0xffe1 APP1 | 2786 | http://ns.adobe.com/xap/1.0/_<?xpacket b
 18080 | 0xffed APP13 | 96 | Photoshop 3.0_8BIM.._____'..__._...Z_..%
 Record | DataSet | Name | Length | Data
 1 | 0 | Iptc.Envelope.ModelVersion | 2 | _.
 1 | 90 | Iptc.Envelope.CharacterSet | 3 | .%G
 2 | 0 | Iptc.Application.RecordVersion | 2 | _.
 2 | 120 | Iptc.Application.Caption | 12 | Classic View
 18178 | 0xffe2 APP2 | 4094 | MPF_II*_.___.__.._.___0100..._.___.___..
 22274 | 0xffdb DQT | 132 | _.......................................
 22408 | 0xffc0 SOF0 | 17 |p..!_........
 22427 | 0xffc4 DHT | 418 | __........________............_.........
 22847 | 0xffda SOS | 12 | .._...._?_..
END: /Users/rmills/Stonehenge.jpg

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

IPTC Character Set Encoding

IPTC Extended Blocks

IPTC in Tiff and other formats.

Bash

https://en.wikipedia.org/wiki/ISO/IEC_2022
https://dev.exiv2.org/issues/0000533

2020-Dec-6, 15:01IMaEA

Page 88 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

In PNG files, the signature *Raw profile type iptc_ is used.

$ taglist ALL | grep Image.IPTCNAA | head -1 | csv -
[Image.IPTCNAA] [33723] [0x83bb] [Image] [Exif.Image.IPTCNAA] [Long] [Contains an IPTC/NAA record
$

1
2
3

$ exiv2 -pS test/data/ReaganLargePng.png
STRUCTURE OF PNG FILE: test/data/ReaganLargePng.png
 address | chunk | length | data | checksum
 8 | IHDR | 13 | | 0x8cf910c3
 33 | zTXt | 8461 | Raw profile type exif..x...iv. | 0x91fbf6a0
 8506 | zTXt | 636 | Raw profile type iptc..x..TKn. | 0x4e5178d3
 9154 | iTXt | 7156 | XML:com.adobe.xmp.....<?xpacke | 0x8d6d70ba
 16322 | gAMA | 4 | | 0x0bfc6105
 16338 | iCCP | 1151535 | ICC profile..x...UP.........!! | 0x11f49e31
 1167885 | bKGD | 6 | | 0xa0bda793
 1167903 | pHYs | 9 | ...#...#. | 0x78a53f76
 1167924 | tIME | 7 |2 | 0x582d32e4
 1167943 | zTXt | 278 | Comment..x.}..n.@....O..5..h.. | 0xdb1dfff5
...

In JP2 file, IPTC is embedded in the uuid/iptc box.

```bash
$ tvisitor -pR ~/jp2.jp2 
STRUCTURE OF JP2 FILE (MM): /Users/rmills/jp2.jp2
 address |   length | box             | uuid | data
       0 |        4 | 0x2020506a jP   |      | ....
      12 |       12 | 0x70797466 ftyp |      | jp2 ____jp2 
      32 |       37 | 0x6832706a jp2h |      | ___.ihdr___.___._..._____.colr._____.
  STRUCTURE OF JP2 FILE (MM): /Users/rmills/jp2.jp2:40->37
         0 |       14 | 0x72646869 ihdr |      | ___.___._...__
        22 |        7 | 0x726c6f63 colr |      | ._____.
  END: /Users/rmills/jp2.jp2:40->37
      77 |     1334 | 0x64697575 uuid | exif | II*_.___._..._..__.___..._.___>.__..._._
    1419 |      934 | 0x64697575 uuid | iptc | ..__._...._.040621-N-6536T-062..._.5..._  

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Bash

Bash



2020-Dec-6, 15:01IMaEA

Page 89 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

TOC

    1419 |      934 | 0x64697575 uuid | iptc | ..__._...._.040621-N-6536T-062..._.5..._  
    2361 |     5582 | 0x64697575 uuid |  xmp | <?xpacket begin="..." id="W5M0MpCehiHzre
    7951 |    32650 | 0x6332706a jp2c |      | .O.Q_/_____.___.___________.___.________
END: /Users/rmills/jp2.jp2

30
31
32
33



2020-Dec-6, 15:01IMaEA

Page 90 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

The ICC Profile is a standand alone file that can be embedded verbatim in many image formats. The purpose
of the ICC profile is to provide additional color data about the image. Most colour images are encoded as RGB
or CMYK. When these are rendered on a device, it’s necessary to know the actual colour of Red in the image
and on the output device. The Colour Management System (CMS) attempts to render the image to be the same
on different devices. This is of course impossible, however the aim of the ICC Profile is enable the software to
achieve good colour fidelity when printing or displaying on different devices.

The ICC Profile is a member of the TIFF family of image standards. It has a header, a directory of “tags” and
values for the tags.

Exiv2 has no code to inspect or modify the contents of the ICC Profile. The data is treated as a binary “blob”.
You can insert/delete/add/replace the ICC Colour Profile in several image formats including JPEG, JP2, PNG
and TIFF.

The code which accompanies this book can inspect the contents of an ICC profile.

The specification is available here: http://www.color.org/icc_specs2.xalter. I believe the current ICC Profile
Specification is: ICC.2-2016-7.pdf

TOC

2.4 ICC Profile

http://www.color.org/icc_specs2.xalter


2020-Dec-6, 15:01IMaEA

Page 91 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

https://exiv2.org/makernote.html

MakerNotes are usually written as an IFD, however most manufacturers have extra bytes that precede the IFD.
I suspect the extra bytes are version information. The code in tvisitor.cpp to handle the makernotes is:

To be written.

TOC

2.5 MakerNotes

void IFD::visitMakerNote(Visitor& visitor,DataBuf& buf,uint16_t count,uint32_t offset)
{
    if ( image_.maker_ == kNikon ) {
        // Nikon MakerNote is embeded tiff `II*_....` 10 bytes into the data!
        size_t punt = buf.strequals("Nikon") ? 10
                    : 0
                    ;
        Io     io(io_,offset+punt,count-punt);
        TiffImage makerNote(io,image_.maker_);
        makerNote.visit(visitor,makerDict());
    } else if ( image_.maker_ == kAgfa && buf.strequals("ABC") ) {
        // Agfa  MakerNote is an IFD `ABC_II#E...`  6 bytes into the data!
        ImageEndianSaver save(image_,keLittle);
        IFD makerNote(image_,offset+6,false);
        makerNote.visit(visitor,makerDict());
    } else {
        bool   bNext = maker()  != kSony;                                        // Sony no trailing next
        size_t punt  = maker()  == kSony && buf.strequals("SONY DSC ") ? 12 : 0; // Sony 12 byte punt
        IFD makerNote(image_,offset+punt,bNext);
        makerNote.visit(visitor,makerDict());
    }
} // visitMakerNote

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

C++

https://exiv2.org/makernote.html


2020-Dec-6, 15:01IMaEA

Page 92 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

Exiv2 has code to convert data between different Metdata standards. Generally when you update Exif
metadata, equivalent modifications will be performed on the IPTC and XMP metadata. I can’t explain why this
code was added to Exiv2 and, while it may be convenient and invisible in its operation, it also has undesirable
side effects.

If Exiv2 is ever rewritten, the decision to keep this capability should be carefully reviewed. I think it would be
better to not have this at all and leave library users to provide this in their application code.

TOC

2.6 Metadata Convertors



2020-Dec-6, 15:01IMaEA

Page 93 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

The exiv2 option -pS prints the structure of an image.

We can see that the Exif metadata is stored at offset=2+2+2+6 and has length 15288-offset. We can extract that
as follows:

Internally, this is exactly how exiv2 works. It doesn’t use dd of course. However it identifies the Exif IFD and
parses it into memory.

Using dd is a useful trick to recover data which can be easily seen in the file. For example, if you wished to
extract the pixels from an image, dd can extract them. Of course you have to determine the offset and length to
extract and exiv2 has excellent tools to provide that data.

You can extract and inspect the metadata with this single rather elegant command:

3 Reading Metadata

3.1 Read metadata with dd

$ exiv2 -pS ~/Stonehenge.jpg 
STRUCTURE OF JPEG FILE: /Users/rmills/Stonehenge.jpg
 address | marker       |  length | data
       0 | 0xffd8 SOI  
       2 | 0xffe1 APP1  |   15288 | Exif..II*......................
   15292 | 0xffe1 APP1  |    2610 | http://ns.adobe.com/xap/1.0/.<?x
   17904 | 0xffed APP13 |      96 | Photoshop 3.0.8BIM.......'.....
   18002 | 0xffe2 APP2  |    4094 | MPF.II*...............0100.....
   22098 | 0xffdb DQT   |     132 
   22232 | 0xffc0 SOF0  |      17 
   22251 | 0xffc4 DHT   |     418 
   22671 | 0xffda SOS  
$

1
2
3
4
5
6
7
8
9
10
11
12
13

$ dd if=~/Stonehenge.jpg count=$((15288-(2+2+2+6))) bs=1 skip=$((2+2+2+6)) > foo.tif
15276+0 records in
15276+0 records out
15276 bytes transferred in 0.102577 secs (148922 bytes/sec)
$ dd if=~/Stonehenge.jpg count=$((15288-(2+2+2+6))) bs=1 skip=$((2+2+2+6)) | dmpf - | head
       0        0: II*_.___._..._.___.___..._.___._  ->  49 49 2a 00 08 00 ...
.../book $ 
$ file foo.tif
foo.tif: TIFF image data, little-endian, direntries=11, manufacturer=NIKON CORPORATION, model
$ exiv2 -pa foo.tif 
Warning: Directory Thumbnail, entry 0x0201: Data area exceeds data buffer, ignoring it.
Exif.Image.Make                              Ascii      18  NIKON CORPORATION
Exif.Image.Model                             Ascii      12  NIKON D5300
Exif.Image.Orientation                       Short       1  top, left
Exif.Image.XResolution                       Rational    1  300
Exif.Image.YResolution                       Rational    1  300
...

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

Bash

Bash



2020-Dec-6, 15:01IMaEA

Page 94 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

The exiv2 command exiv2 -pS image reveals the structure of a file with | separated fields. The data is
presented to look nice. However it’s also very convenient for parsing in bash with the utility cut:

You may be interested to discover that option -pS which arrived with Exiv2 v0.25 was joined in Exiv2 v0.26 by
-pR. This is a recursive version of -pS. It dumps the structure not only of the file, but also subfiles (such as IFDs
and JPEG/thumbnails and ICC profiles). This is discussed in detail here: 3.4 IFD::accept().

TOC

A tag is the unit of data storage in a tiff entry. It has a tag (uint16_t), type (uint16_t), count (uint32_t) and value
(uint32_t)_ The meaning of the 16-bit tag is defined by the standard to which the IFD has been written. These
are discussed here: 2.1 Exif Metadata. The TIFF-EP specification defines tags in the IFD0 (the “top-level” IFD)
such as Make (0x010f) and ExifTag (0x8769). The tag ExifTag introduces a new IFD in which tags of interest to
the Exif Committee are defined. Examples are DateTimeOriginal (0x9003) and MakerNote (0x927c), GpsTag
(ktGps). Tags such as MakerNote and GpsTag define new IFDs. The meaning for the tags in the IFD referenced
by GpsTag is defined by the Exif Committee. The meaning of the tags in the IFD referenced by a MakerNote
have been discovered by reverse engineering.

It’s important to appreciate that when you visit an IFD, you need a dictionary of tag->name to know the
meaning of the tag. That dictionary is not a constant, it depends on the IFD that is being read. In the case of the
MakerNote, the dictionary of tag->name depends on the Manufacturer. The tvisitor.cpp program invokes code
to set the makerDict when it reads the Make (0x010f) in the “top-level” IFD.

Exiv2 (and tvisitor.cpp) report tags with the syntax such as Exif.Image.Make. Exif.Photo.DateTimeOriginal.
This syntax is of the format: Family.Group.Tagname. There are three Families in Exiv2 which are Exif, IPTC
and Xmp. The group Image implies that the tag was read in IFD0, the group Photo implies that the tag was
read in the the Exif IFD. tvisitor.cpp has about 10 groups (Image, Photo, GPS, Nikon, Apple, Canon etc). Exiv2
has 106 groups as each of about 10 manufacturers have about 10 sub groups.

$ dd if=~/Stonehenge.jpg count=$((15288-(2+2+2+6))) bs=1 skip=$((2+2+2+6)) 2>/dev/null |
Exif.Image.Make                              Ascii      18  NIKON CORPORATION
Exif.Image.Model                             Ascii      12  NIKON D5300
Exif.Image.Orientation                       Short       1  top, left
$

1
2
3
4
5

$ image=~/Stonehenge.jpg
$ exiv2 -pS $image 2>/dev/null | grep APP1 | grep Exif
$        2 | 0xffe1 APP1  |   15288 | Exif..II*......................
$ line=$(exiv2 -pS ~/Stonehenge.jpg 2>/dev/null | grep APP1 | grep Exif )
$ start=$(echo $line|cut  -d'|' -f 1)
$ count=$(echo $line|cut  -d'|' -f 3)
$ dd if=$image count=$((count-10)) bs=1 skip=$((start+10)) 2>/dev/null | exiv2 -pa - 2>/dev/null 
Exif.Image.Make                              Ascii      18  NIKON CORPORATION
Exif.Image.Model                             Ascii      12  NIKON D5300
Exif.Image.Orientation                       Short       1  top, left
$

1
2
3
4
5
6
7
8
9
10
11

3.2 Tags and TagNames

Bash

Bash



2020-Dec-6, 15:01IMaEA

Page 95 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

For simplicity, tvisitor.cpp only supports the family Exif, however it has code to decode and present IPTC, ICC
and Xmp metadata.

TOC

This is implemented using Visitor in Design Patterns)

The concept in the visitor pattern is to separate the data in an object from the code which that has an interest in
the object. In the following code, we have a vector of students and every student has a name and an age. We
have several visitors. The French Visitor translates the names of the students. The AverageAgeVisitor
calculates the average age of the visitor. Two points to recognise in the pattern:

1. The students know nothing about the visitors. However, they know when they are visited. If the visitor
has an API, the students can obtain data about the visitor.

2. The visitors use the student API to get data about a student.

3.3 Visitor Design Pattern

// visitor.cpp
#include <iostream>
#include <string>
#include <vector>
#include <map>

// 1.  declare types
class   Student; // forward

// 2. Create abstract "visitor" base class with an element visit() method
class Visitor
{
public:
    Visitor() {};
    virtual void visit(Student& student) = 0 ;
};

// 3. Student has an accept(Visitor&) method
class Student
{
public:
    Student(std::string name,int age,std::string course)
    : name_(name)
    , age_(age)
    , course_(course)
    {}
    void accept(class Visitor& v) {
      v.visit(*this);
    }
    std::string name()  { return name_; } 
    int         age()   { return age_;  }
    std::string course(){ return course_;  }
private:
    std::string course_ ;
    std::string name_   ;
    int         age_    ;

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

C++

https://www.oreilly.com/library/view/design-patterns-elements/0201633612/


2020-Dec-6, 15:01IMaEA

Page 96 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

And let’s create a container for Students.

    int         age_    ;
};

// 4. Create concrete "visitors"
class RollcallVisitor: public Visitor
{
public:
    RollcallVisitor() {}
    void visit(Student& student)
    {
        std::cout << student.name() <<  " | " << student.age() << " | " << student.course
    }
};

class FrenchVisitor: public Visitor
{
public:
    FrenchVisitor()
    {
        dictionary_["this"]      = "ce"      ;
        dictionary_["that"]      = "que"     ;
        dictionary_["the other"] = "l'autre" ;
    }
    void visit(Student& student)
    {
        std::cout << "FrenchVisitor: " << dictionary_[student.name()] << std::endl;
    }
private:
    std::map<std::string,std::string> dictionary_;
};

class AverageAgeVisitor: public Visitor
{
public:
    AverageAgeVisitor() : students_(0), years_(0) {}
    void visit(Student& student)
    {
        students_ ++ ;
        years_    += student.age();
    }
    void reportAverageAge() 
    {
        std::cout << "average age = "  << (double) years_ / (double) students_ << std::endl 
    }
private:
    int years_;
    int students_;
};

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83



2020-Dec-6, 15:01IMaEA

Page 97 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

Create an application with data.

And when we run it:

We could of course add other classes to this program. We could have class Building and add buildings to the

class College
{
public:
             College() {};
    virtual ~College() {};

    void add(Student student) {
        students_.push_back(student);
    }
    void visit(Visitor& visitor) {
        for ( std::vector<Student>::iterator student = students_.begin() ; student != students_
            student->accept(visitor);
        }
    }
private:
    std::vector<Student> students_;
};

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

int main() {
    // create a highSchool and add some students
    College highSchool;

    highSchool.add(Student("this",10,"art"             ));
    highSchool.add(Student("that",12,"music"           ));
    highSchool.add(Student("the other",14,"engineering"));

    // Create different visitors to visit highSchool
    RollcallVisitor  rollCaller;
    highSchool.visit(rollCaller);

    FrenchVisitor    frenchVisitor;
    highSchool.visit(frenchVisitor);

    AverageAgeVisitor averageAgeVisitor;
    highSchool.visit(averageAgeVisitor);
    averageAgeVisitor.reportAverageAge();

    return 0 ;
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

.../book/build $ ./visitor 
this | 10 | art
that | 12 | music
the other | 14 | engineering
FrenchVisitor: ce
FrenchVisitor: que
FrenchVisitor: l'autre
average age = 12
.../book/build $ 

1
2
3
4
5
6
7
8
9

C++

C++

Bash



2020-Dec-6, 15:01IMaEA

Page 98 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

college. The visitor could visit all the buildings. We could have rooms in every building. I am sure you get the
idea.

In a JPEG, we have a linked list of segments. So tvisitor.cpp has a visitSegment() method. As JPEG has an
embedded Exif Tiff, so we have visitExif(), visitIFD(), visitTag(), visitXMP(). The visitor knows nothing about
how to navigate the file.

In tvisitor.cpp, we only have a single Visitor called ReportVisitor. When you create him, you specify options
which are Basic, Recursive, XMP. The ReportVisitor effectively performs the same options as $ exiv2 -pS, or $
exiv2 -pR, or $ exiv2 -pX. We could easily create a new class Exiv2Visitor which would create Exiv2::ExifData.
It’s also possible to create a class Exiv2Writer which would output a new file with modified metadata.

TOC

Exiv2 has two tiff parsers - TiffVisitor and Image::printIFDStructure(). TiffVisitor was written by Andreas
Huggel. It’s very robust and has been almost bug free for 15 years. I wrote the parser in
Image::printIFDStructure() to try to understand the structure of a tiff file. The code in
Image::printIFDStructure() is easier to understand.

The code which accompanies this book has a simplified version of Image::printIFDStructure() called
IFD::accept() and that’s what will be discussed here. The code that accompanies this book is explained here:
Code discussed in this book

It is important to realise that metadata is defined recursively. In a Tiff File, there will be a Tiff Record
containing the Exif data (written in Tiff Format). Within, that record, there will be a MakerNote which is
usually written in TIFF Format. TIFF Format is referred to as an IFD - an Image File Directory.

TiffImage::accept() uses a simple direct approach to parsing the tiff file. When another IFD is located,
IFD::accept() is called recursively. As a TIFF file has an 8 byte header which provides the offset to the first IFD.
We can descend into the tiff file from the beginning. For other files types, the file handler has to find the Exif
IFD and then call IFD::accept().

There are several ways in which IFD::accept() is called. TiffImage::accept() starts with the tiff header II*_long
or MM_*long and then calls IFD::accept(). Makernotes are usually an IFD. Some manufactures (Nikon) embed
a Tiff. Some (Canon and Sony) embed an IFD. It’s quite common (Sony) to embed a single IFD which is not
terminated with a four byte null uint32_t.

The program tvisitor has several file handlers such as TiffImage, JpegImage and CrwImage. Exiv2 has
handlers for about 20 different formats. If you understand Tiff and Jpeg, the others are boring variations.

3.4 IFD::accept() and TiffImage::accept()

void IFD::accept(Visitor& visitor,const TagDict& tagDict/*=tiffDict*/)
{
    IoSave   save(io_,start_);
    bool     bigtiff = image_.bigtiff();
    endian_e endian  = image_.endian();

    if ( !image_.depth_++ ) image_.visits().clear();
    visitor.visitBegin(image_);
    if ( image_.depth_ > 100 ) Error(kerCorruptedMetadata) ; // weird file

1
2
3
4
5
6
7
8
9

C++



2020-Dec-6, 15:01IMaEA

Page 99 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

    if ( image_.depth_ > 100 ) Error(kerCorruptedMetadata) ; // weird file

    // buffer
    DataBuf  entry(bigtiff ? 20 : 12);
    uint64_t start=start_;
    while  ( start ) {
        // Read top of directory
        io_.seek(start);
        io_.read(entry.pData_, bigtiff ? 8 : 2);
        uint64_t nEntries = bigtiff ? getLong8(entry,0,endian) : getShort(entry,0,endian

        if ( nEntries > 500 ) Error(kerTiffDirectoryTooLarge,nEntries);
        visitor.visitDirBegin(image_,nEntries);
        uint64_t a0 = start + (bigtiff?8:2) + nEntries * entry.size_; // addresss to read next

        // Run along the directory
        for ( uint64_t i = 0 ; i < nEntries ; i ++ ) {
            const uint64_t address = start + (bigtiff?8:2) + i* entry.size_ ;
            if ( visits().find(address) != visits().end()  ) { // never visit the same place twice!
                Error(kerCorruptedMetadata);
            }
            visits().insert(address);
            io_.seek(address);

            io_.read(entry);
            uint16_t tag    = getShort(entry,  0,endian);
            type_e   type   = getType (entry,  2,endian);
            uint64_t count  = get4or8 (entry,4,0,endian);
            uint64_t offset = get4or8 (entry,4,1,endian);

            if ( !typeValid(type,bigtiff) ) {
                Error(kerInvalidTypeValue,type);
            }

            uint64_t size   = typeSize(type) ;
            size_t   alloc  = size*count     ;
            DataBuf  buf(alloc);
            if ( alloc < (bigtiff?8:4) ) {
                buf.copy(&offset,size);
            } else {
                IoSave save(io_,offset);
                io_.read(buf);
            }
            if ( tagDict == tiffDict && tag == ktMake ) image_.setMaker(buf);
            visitor.visitTag(io_,image_,address,tag,type,count,offset,buf,tagDict);  // Tell the visitor

            // recursion anybody?
            if ( isTypeIFD(type) ) tag  = ktSubIFD;
            switch ( tag ) {
                case ktGps       : IFD(image_,offset,false).accept(visitor,gpsDict );break
                case ktExif      : IFD(image_,offset,false).accept(visitor,exifDict);break
                case ktMakerNote :         visitMakerNote(visitor,buf,count,offset);break
                case ktSubIFD    :
                     for ( uint64_t i = 0 ; i < count ; i++ ) {
                         offset = get4or8 (buf,0,i,endian);
                         IFD(image_,offset,false).accept(visitor,tagDict);
                     }

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65



2020-Dec-6, 15:01IMaEA

Page 100 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

The MakerNote is thorny. Every manufacturer has similar ideas with different details. This is discussed in
detail: 2.5 MakerNotes

To complete the story, here’s TiffImage::valid() and TiffImage::accept(). We need two flavours of accept. The
default assumes tiffDict. The makernote handlers pass their TagDict to accept().

                break;
                default: /* do nothing */ ; break;
            }
        } // for i < nEntries

        start = 0; // !stop
        if ( next_ ) {
            io_.seek(a0);
            io_.read(entry.pData_, bigtiff?8:4);
            start = bigtiff?getLong8(entry,0,endian):getLong(entry,0,endian);
        }
        visitor.visitDirEnd(image_,start);
    } // while start != 0

    visitor.visitEnd(image_);
    image_.depth_--;
} // IFD::accept

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82



2020-Dec-6, 15:01IMaEA

Page 101 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

JpegImage::accept() navigates the chain of segments. It is discussed in detail: 8.8 Jpeg::Image accept()

When JpegImage::accept() finds the embedded TIFF in the APP1 segment, he does this. This is very similar to
how the TiffImage for the Nikon makernote is created and navigated.

He creates a TiffImage with the stream and calls TiffImage::accept(visitor). Software seldom gets simpler, as
beautiful, or more elegant than this.

bool TiffImage::valid()
{
    IoSave restore(io(),0);

    // read header
    DataBuf  header(16);
    io_.read(header);

    char c   = (char) header.pData_[0] ;
    char C   = (char) header.pData_[1] ;
    endian_  = c == 'M' ? keBig : keLittle;
    magic_   = getShort(header,2,endian_);
    bigtiff_ = magic_ == 43;
    start_   = bigtiff_ ? getLong8(header,8,endian_) : getLong (header,4,endian_);
    format_  = bigtiff_ ? "BIGTIFF"                  : "TIFF"                    ;

    uint16_t bytesize = bigtiff_ ? getShort(header,4,endian_) : 8;
    uint16_t version  = bigtiff_ ? getShort(header,6,endian_) : 0;

    return (magic_ == 42||magic_ == 43) && (c == C) && ( c == 'I' || c == 'M' ) && bytesize 
} // TiffImage::valid

void TiffImage::accept(class Visitor& visitor)
{
    accept(visitor,tiffDict);
}

void TiffImage::accept(Visitor& visitor,TagDict& tagDict)
{
    if ( valid() ) {
        IFD ifd(*this,start_,next_);
        ifd.visit(visitor,tagDict);
    } else {
        std::ostringstream os ; os << "expected " << format_ ;
        Error(kerInvalidFileFormat,io().path(), os.str());
    }
} // TiffImage::visit

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

void ReportVisitor::visitExif(Io& io)
{
    if ( option() & kpsRecursive ) {
        // Beautiful.  io is a tiff file, call TiffImage::accept(visitor)
        TiffImage(io).accept(*this);
    }
}

1
2
3
4
5
6
7

C++

C++

file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html%238-8


2020-Dec-6, 15:01IMaEA

Page 102 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

Just to remind you, BasicIo supports http/ssh and other protocols. This code will recursively descend into a
remote file without copying it locally. And he does it with great efficiency. This is discussed in section 5 I/O in
Exiv2

The code in tvisitor.cpp implements the visitor pattern and three visitors are implemented.

tvisitor option exiv2 option Description

$ ./tvisitor S path
$ ./tvisitor path

$ exiv2 -pS path Print the structure of the image

$ ./tvisitor R path $ exiv2 -pR path Recursively print the structure of the image

$ ./tvisitor X path $ exiv2 -pX path Print the XMP/xml in the image

$ ./tvisitor C path $ exiv2 -pC path Print the ICC Profile in the image

$ ./tvisitor I path $ exiv2 -pi path Print IPTC data

$ ./tvisitor U path $ exiv2 -pa –undefined path Show unknown tags

Let’s see the recursive version in action:

$ ./tvisitor R ~/Stonehenge.jpg 
STRUCTURE OF JPEG FILE: /Users/rmills/Stonehenge.jpg

1
2

Bash



2020-Dec-6, 15:01IMaEA

Page 103 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

You can see that he identifies the file as follows:

He is working on an embedded TIFF which is located at bytes 12..15289 which is the Tiff IFD. While processing
that, he encountered a MakerNote which occupies bytes 924..3142 of that IFD. As you can see, its four bytes
0211. You could locate that data with the command:

Using dd to extract metadata is discussed in more detail here: 8.1 Read metadata with dd.

Please be aware that there are two ways in which IFDs can occur in the file. They can be an embedded TIFF
which is complete with the II*_long or MM_*long 8-byte header and the offset leads to the IFD. Or the IFD
can be in the file without the header. IFD::visit(visitor) knows that the tags such as GpsTag and ExifTag are

 address | marker       |  length | data
       0 | 0xffd8 SOI  
       2 | 0xffe1 APP1  |   15288 | Exif__II*_.___._..._.___.___..._._
  STRUCTURE OF TIFF FILE (II): /Users/rmills/Stonehenge.jpg:12->15280
   address |    tag                              |      type |    count |    offset | value
        10 | 0x010f Make                         |     ASCII |       18 |       146 | NIKON CORPORATION_
        22 | 0x0110 Model                        |     ASCII |       12 |       164 | NIKON D5300_
...
       118 | 0x8769 ExifTag                      |      LONG |        1 |           | 222
    STRUCTURE OF TIFF FILE (II): /Users/rmills/Stonehenge.jpg:12->15280
     address |    tag                              |      type |    count |    offset | value
         224 | 0x829a ExposureTime                 |  RATIONAL |        1 |       732 | 10/4000
         236 | 0x829d FNumber                      |  RATIONAL |        1 |       740 | 100/10
...
         416 | 0x927c MakerNote                    | UNDEFINED |     3152 |       914 | Nikon_
      STRUCTURE OF TIFF FILE (II): /Users/rmills/Stonehenge.jpg:12->15280:924->3142
       address |    tag                              |      type |    count |    offset 
            10 | 0x0001 Version                      | UNDEFINED |        4 |           
...
    END /Users/rmills/Stonehenge.jpg:12->15280
       130 | 0x8825 tag 34853 (0x8825)           |      LONG |        1 |           | 4060
...
      4410 | 0x0213 YCbCrPositioning             |     SHORT |        1 |           | 1
  END /Users/rmills/Stonehenge.jpg:12->15280
   15292 | 0xffe1 APP1  |    2610 | http://ns.adobe.com/xap/1.0/_<?xpa
   17904 | 0xffed APP13 |      96 | Photoshop 3.0_8BIM.._____'..__._..
   18002 | 0xffe2 APP2  |    4094 | MPF_II*_.___.__.._.___0100..._.___
   22098 | 0xffdb DQT   |     132 
   22232 | 0xffc0 SOF0  |      17 
   22251 | 0xffc4 DHT   |     418 
   22671 | 0xffda SOS  

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

         416 | 0x927c MakerNote                    | UNDEFINED |     3152 |       914 | Nikon_
      STRUCTURE OF TIFF FILE (II): /Users/rmills/Stonehenge.jpg:12->15280:924->3142
       address |    tag                              |      type |    count |    offset 
            10 | 0x0001 Version                      | UNDEFINED |        4 |           
...

1
2
3
4
5

$ dd if=~/Stonehenge.jpg bs=1 skip=$((12+924+10+8)) count=4 2>/dev/null ; echo 
0211
$ 

1
2
3

Bash

Bash



2020-Dec-6, 15:01IMaEA

Page 104 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

IFDs and recursively calls IFD::visit(visitor). For the embedded TIFF (such as Nikon MakerNote),
IFD::visit(visitor) creates a TiffImage and calls TiffImages.accept(visitor) which validates the header and calls
IFD::visit(visitor).

Another important detail is that although the Tiff Specification expects the IFD to end with a uint32_t offset ==
0, Sony (and other) maker notes do not. The IFD begins with a uint32_t to define length, followed by 12 byte
tags. There is no trailing null uint32_t.

TOC

I added support in tvisitor.cpp for one binary tag which is Nikon Picture Control tag = 0x0023. You’ll see from
the output of tvisitor that it’s 58 bytes.

Beautifully documented as follows:

ExifTool Exiv2

https://exiftool.org/TagNames/Nikon.html#PictureControl https://exiv2.org/tags-nikon.html

The Exiv2 website is generated by reading the tag definitions in the code-base:

3.5 ReportVisitor::visitTag()

.../book/build $ ./tvisitor -pR ~/Stonehenge.jpg | grep -i picture
   286 | 0x0023 Exif.Nikon.PictureControl  | UNDEFINED |   58 |    | 0100STANDARD____________STANDARD____ +++
.../book/build $ 

1
2
3

Bash

https://exiftool.org/TagNames/Nikon.html%23PictureControl
https://exiv2.org/tags-nikon.html


2020-Dec-6, 15:01IMaEA

Page 105 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

I’ve decided to call a binary element a Field. So we have a class, and vector of fields for a tag, and a map to
hold the definitions:

$ taglist ALL | grep NikonPc | csv -
[NikonPc.Version]   [0] [0x0000]    [NikonPc]   [Exif.NikonPc.Version]  [Undefined] [Version
[NikonPc.Name]  [4] [0x0004]    [NikonPc]   [Exif.NikonPc.Name] [Ascii] [Name]  
[NikonPc.Base]  [24]    [0x0018]    [NikonPc]   [Exif.NikonPc.Base] [Ascii] [Base]  
[NikonPc.Adjust]    [48]    [0x0030]    [NikonPc]   [Exif.NikonPc.Adjust]   [Byte]  [Adjust
[NikonPc.QuickAdjust]   [49]    [0x0031]    [NikonPc]   [Exif.NikonPc.QuickAdjust]  [Byte
[NikonPc.Sharpness] [50]    [0x0032]    [NikonPc]   [Exif.NikonPc.Sharpness]    [Byte]  
[NikonPc.Contrast]  [51]    [0x0033]    [NikonPc]   [Exif.NikonPc.Contrast] [Byte]  [Contrast
[NikonPc.Brightness]    [52]    [0x0034]    [NikonPc]   [Exif.NikonPc.Brightness]   [Byte
[NikonPc.Saturation]    [53]    [0x0035]    [NikonPc]   [Exif.NikonPc.Saturation]   [Byte
[NikonPc.HueAdjustment] [54]    [0x0036]    [NikonPc]   [Exif.NikonPc.HueAdjustment]    
[NikonPc.FilterEffect]  [55]    [0x0037]    [NikonPc]   [Exif.NikonPc.FilterEffect] [Byte
[NikonPc.ToningEffect]  [56]    [0x0038]    [NikonPc]   [Exif.NikonPc.ToningEffect] [Byte
[NikonPc.ToningSaturation]  [57]    [0x0039]    [NikonPc]   [Exif.NikonPc.ToningSaturation
$ 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Bash



2020-Dec-6, 15:01IMaEA

Page 106 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

class Field
{
public:
    Field
    ( std::string name
    , type_e      type
    , uint16_t    start
    , uint16_t    count
    , endian_e    endian = keImage
    )
    : name_  (name)
    , type_  (type)
    , start_ (start)
    , count_ (count)
    , endian_(endian)
    {};
    virtual ~Field() {}
    std::string name  () { return name_   ; }
    type_e      type  () { return type_   ; }
    uint16_t    start () { return start_  ; }
    uint16_t    count () { return count_  ; }
    endian_e    endian() { return endian_ ; }
private:
    std::string name_   ;
    type_e      type_   ;
    uint16_t    start_  ;
    uint16_t    count_  ;
    endian_e    endian_ ;
};
typedef std::vector<Field>   Fields;
typedef std::map<std::string,Fields>  MakerTags;

// global variable
MakerTags makerTags;
...
void init()
{
    nikonDict [ktGroup ] = "Nikon";
...
    nikonDict [ 0x0023 ] = "PictureControl";
...
    makerTags["Exif.Nikon.PictureControl"].push_back(Field("PcVersion"         ,asciiString 
    makerTags["Exif.Nikon.PictureControl"].push_back(Field("PcName"            ,asciiString 
...
    makerTags["Exif.Nikon.PictureControl"].push_back(Field("PcToningEffect"    ,unsignedByte
    makerTags["Exif.Nikon.PictureControl"].push_back(Field("PcToningSaturation",unsignedByte
...
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

C++



2020-Dec-6, 15:01IMaEA

Page 107 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

The code in visitTag() uses DataBuf.toString() to format the data:

ReportVisitor::visitTag()
    virtual void visitTag
    ( Io&            io
    , Image&         image
    , uint64_t       address
    , uint16_t       tag
    , type_e         type
    , uint64_t       count
    , uint64_t       offset
    , DataBuf&       buf
    , const TagDict& tagDict
    ) {
        // format the output
        std::ostringstream    os ; os << offset;
        std::string offsetS = typeSize(type)*count > (image.bigtiff_?8:4) ? os.str() :""
        std::string    name = tagName(tag,tagDict,28);
        std::string   value = buf.toString(type,count,image.endian_);

        if ( printTag(name) ) {
            out() << indent()
                  << stringFormat("%8u | %#06x %-28s |%10s |%9u |%10s | "
                        ,address,tag,name.c_str(),::typeName(type),count,offsetS.c_str()
                  << chop(value,40)
                  << std::endl
            ;
            if ( makerTags.find(name) != makerTags.end() ) {
                for (Field field : makerTags[name] ) {
                    std::string n      = join(groupName(tagDict),field.name(),28);
                    endian_e    endian = field.endian() == keImage ? image.endian() : field
                    out() << indent()
                          << stringFormat("%8u | %#06x %-28s |%10s |%9u |%10s | "
                                         ,offset+field.start(),tag,n.c_str(),typeName(field
                          << chop(buf.toString(field.type(),field.count(),endian,field.start
                          << std::endl
                    ;
                }
            }
        }
    } // visitTag

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

C++



2020-Dec-6, 15:01IMaEA

Page 108 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

Here’s the beautiful result on ~/Stonehenge.jpg

std::string DataBuf::toString(type_e type,uint64_t count,endian_e endian,uint64_t offset
{
    std::ostringstream os;
    std::string        sp;
    uint16_t           size = typeSize(type);
    if ( isTypeShort(type) ){
        for ( uint64_t k = 0 ; k < count ; k++ ) {
            os << sp << ::getShort(*this,offset+k*size,endian);
            sp = " ";
        }
    } else if ( isTypeLong(type) ){
        for ( uint64_t k = 0 ; k < count ; k++ ) {
            os << sp << ::getLong(*this,offset+k*size,endian);
            sp = " ";
        }
    } else if ( isTypeRational(type) ){
        for ( uint64_t k = 0 ; k < count ; k++ ) {
            uint32_t a = ::getLong(*this,offset+k*size+0,endian);
            uint32_t b = ::getLong(*this,offset+k*size+4,endian);
            os << sp << a << "/" << b;
            sp = " ";
        }
    } else if ( isType8Byte(type) ) {
        for ( uint64_t k = 0 ; k < count ; k++ ) {
            os << sp << ::getLong8(*this,offset+k*size,endian);
            sp = " ";
        }
    } else if ( type == kttUByte ) {
        for ( size_t k = 0 ; k < count ; k++ )
            os << stringFormat("%s%d",k?" ":"",pData_[offset+k]);
    } else if ( type == kttAscii ) {
        bool bNoNull = true ;
        for ( size_t k = 0 ; bNoNull && k < count ; k++ )
            bNoNull = pData_[offset+k];
        if ( bNoNull )
            os << binaryToString(offset, (size_t)count);
        else
            os << (char*) pData_+offset ;
    } else {
        os << sp << binaryToString(offset, (size_t)count);
    }

    return os.str();
} // DataBuf::toString

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

C++



2020-Dec-6, 15:01IMaEA

Page 109 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

Could this be even better? Of course. As always reader, I leave you to send me a patch which will:

1. Test that we only decode bytes read from image.
2. Build and run this on a BigEndian machine (PPC, Sparc)
3. You’re welcome to suggest other magic!

TOC

...book/build $ ./tvisitor -pR ~/Stonehenge.jpg | grep -e PictureControl -e Pc
 286 | 0x0023 Exif.Nikon.PictureControl    | UNDEFINED |       58 |       837 | 0100STANDARD____________STANDARD____ +++
 837 | 0x0023 Exif.Nikon.PcVersion         |     ASCII |        4 |           | 0100
 841 | 0x0023 Exif.Nikon.PcName            |     ASCII |       20 |           | STANDARD
 861 | 0x0023 Exif.Nikon.PcBase            |     ASCII |       20 |           | STANDARD
 885 | 0x0023 Exif.Nikon.PcAdjust          |      BYTE |        1 |           | 0
 886 | 0x0023 Exif.Nikon.PcQuickAdjust     |      BYTE |        1 |           | 255
 887 | 0x0023 Exif.Nikon.PcSharpness       |      BYTE |        1 |           | 0
 888 | 0x0023 Exif.Nikon.PcContrast        |      BYTE |        1 |           | 0
 889 | 0x0023 Exif.Nikon.PcBrightness      |      BYTE |        1 |           | 128
 890 | 0x0023 Exif.Nikon.PcSaturation      |      BYTE |        1 |           | 0
 891 | 0x0023 Exif.Nikon.PcHueAdjustment   |      BYTE |        1 |           | 128
 892 | 0x0023 Exif.Nikon.PcFilterEffect    |      BYTE |        1 |           | 255
 893 | 0x0023 Exif.Nikon.PcFilterEffect    |      BYTE |        1 |           | 255
 894 | 0x0023 Exif.Nikon.PcToningSaturat.. |      BYTE |        1 |           | 255
...book/build $ 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

Bash



2020-Dec-6, 15:01IMaEA

Page 110 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

3.6 JpegImage::accept()
void JpegImage::accept(Visitor& visitor)
{
    // Ensure that this is the correct image type
    if (!valid()) {
        std::ostringstream os ; os << "expected " << format_ ;
        Error(kerInvalidFileFormat,io().path(),os.str());
    }
    IoSave save(io(),0);
    visitor.visitBegin((*this)); // tell the visitor

    enum                             // kes = Exif State
    { kesNone = 0                    // not reading exif
    , kesAdobe                       // in a chain of APP1/Exif__ segments
    , kesAgfa                        // in AGFA segments of 65535
    }          exifState = kesNone ;
    DataBuf    exif                ; // buffer to suck up exif data
    uint64_t   nExif     = 0       ; // Count the segments in Exif
    uint64_t   aExif     = 0       ; // Remember address of block0

    DataBuf    XMP                 ; // buffer to suck up XMP
    bool       bExtXMP   = false   ;

    // Step along linked list of segments
    bool     done = false;
    while ( !done ) {
        // step to next marker
        int  marker = advanceToMarker();
        if ( marker < 0 ) {
            Error(kerInvalidFileFormat,io().path());
        }

        size_t      address       = io_.tell()-2;
        DataBuf     buf(48);

        // Read size and signature
        uint64_t    bufRead       = io_.read(buf);
        uint16_t    length        = bHasLength_[marker] ? getShort(buf,0,keBig):0;
        bool        bAppn         = marker >= app0_ && marker <= (app0_ | 0x0F);
        bool        bHasSignature = marker == com_ || bAppn ;
        std::string signature     = bHasSignature ? buf.binaryToString(2, buf.size_ - 2)

        bool        bExif         = bAppn && signature.size() > 6 && signature.find("Exif"
        exifState                 = bExif       ? kesAdobe
                                  : (exifState == kesAdobe && length == 65535) ? kesAgfa
                                  : kesNone ;

        if ( exifState ) { // suck up the Exif data
            size_t chop = bExif ? 6 : 0 ;
            exif.read(io_,(address+2)+2+chop,length-2-chop); // read into memory
            if ( !nExif ++ ) aExif = (address+2)+2+chop ;
            if ( length == 65535 && !bExif ) exifState = kesAgfa;
        }

        // deal with deferred Exif metadata

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

C++



2020-Dec-6, 15:01IMaEA

Page 111 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

This function is not as simple as TiffImage::accept(). It navigates the chain of segments and calls the visitor
appropriately. The function is complicated to deal with Extended JPEG. There are two schemes for dealing
with Exif metadata that span more than a single segment.

For the benefit of clarity, I haven’t shown the code here which handles Extended XMP. In Exiv2, there is also
code to handle ICC profiles which can also span multiple segments.

The way in which extended JPEG is managed is quite simple. A DataBuf is used and as more data is
discovered we read from the image source into the DataBuf. After reading consecutive blocks onto memory,
we tell the visitor and clear the buffer.

        // deal with deferred Exif metadata
        if ( !exif.empty() && !exifState )
        {
            IoSave save(io_,aExif);
            Io     file(io_,aExif,exif.size_); // stream on the file
            Io     memory(exif);               // stream on memory buffer
            visitor.visitExif(nExif == 1 ? file :memory ); // tell the visitor
            exif.empty(true)  ; // empty the exif buffer
            nExif     = 0     ; // reset the block counter
        }
        // deal with deferred XMP
        if ( !XMP.empty() && !bAppn ) {
            visitor.visitXMP(XMP); // tell the visitor
            bExtXMP = false ;
            XMP.empty(true) ; // empty the exif buffer
        }
        visitor.visitSegment(io_,*this,address,marker,length,signature); // tell the visitor

        if ( bAppn ) {
           ... code to deal with multiple segments for XMP and ICC ...
        }

        // Jump past the segment
        io_.seek(address+2+length); // address is previous marker
        done = marker == eoi_ || marker == sos_ || io().eof();
    } // while !done

    visitor.visitEnd((*this)); // tell the visitor
}  // JpegImage::visitTiff

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82



2020-Dec-6, 15:01IMaEA

Page 112 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

TOC



2020-Dec-6, 15:01IMaEA

Page 113 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

Lens Recognition is a difficult problem. The lens isn’t stored in the metadata. Different manufacturers use
different ways to deal with the lens and it’s very common that a number such as “368” is used to represent
several lenses. Then we have to examine other metadata to make a guess about which lens is being used. Lens
recognition has been a time sink on the engineering resources of Team Exiv2. So, I introduced the ~/.exiv2
“Configuration File” in 0.26 to save lots of work and give users an instant way to recognise their lens. You
don’t need to wait on the release cycles of exiv2 and your distribution. You get it fixed instantly.

In the introduction to this book, I have discussed my proposal for M2Lscript (pronounce MillsScript). This is
my proposal to solve the lens problem. Future Exiv2 Projects

The configuration file ~/.exiv2 (or %USERPROFILE%\exiv2.ini for Visual Studio Users) may be used to define
a lens. For example:

If uncertain, exiv2 can display the path:

Most manufacturers store the LensID (an integer) in their maker notes:

4 Lens Recognition

The Configuration File

[nikon]
146=Robin's Sigma Lens

1
2

696 rmills@rmillsmbp:~/gnu/exiv2/team/book $ exiv2 -vVg config_path  # --verbose --version --grep
exiv2 0.27.3
config_path=/Users/rmills/.exiv2
697 rmills@rmillsmbp:~/gnu/exiv2/team/book $ 

1
2
3
4

Ini

Bash



2020-Dec-6, 15:01IMaEA

Page 114 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

Manufacturer Config Section Metadata

Canon [canon] Exif.CanonCs.LensType

Minolta [minolta] Exif.Minolta.LensID

Nikon [nikon] Exif.NikonLd{1|2|3}.LensIDNumber

Olympus [olympus] OlympusEq.LensType

Panasonic [panasonic] Exif.Panasonic.LensType

Pentax [canon] Exif.Pentax.LensType

Sony [sony]
Exif.Sony2010e.LensType
Exif.Sony2010e.LensType2

$ taglist ALL | grep Lens | grep -ie number -ie id -ie type | csv -
[Photo.LensSpecification]   [42034] [0xa432]    [Photo] [Exif.Photo.LensSpecification]  
[Photo.LensModel]   [42036] [0xa434]    [Photo] [Exif.Photo.LensModel]  [Ascii] [This tag records the lens's model name and model number as an ASCII string.
[Photo.LensSerialNumber]    [42037] [0xa435]    [Photo] [Exif.Photo.LensSerialNumber]   
[CanonCs.LensType]  [22]    [0x0016]    [CanonCs]   [Exif.CanonCs.LensType] [SShort]    
[Minolta.LensID]    [268]   [0x010c]    [Minolta]   [Exif.Minolta.LensID]   [Long]  [Lens identifier
[Nikon3.LensType]   [131]   [0x0083]    [Nikon3]    [Exif.Nikon3.LensType]  [Byte]  [Lens type
[NikonLd1.LensIDNumber] [6] [0x0006]    [NikonLd1]  [Exif.NikonLd1.LensIDNumber]    [Byte
[NikonLd2.LensIDNumber] [11]    [0x000b]    [NikonLd2]  [Exif.NikonLd2.LensIDNumber]    
[NikonLd3.LensIDNumber] [12]    [0x000c]    [NikonLd3]  [Exif.NikonLd3.LensIDNumber]    
[OlympusEq.LensType]    [513]   [0x0201]    [OlympusEq] [Exif.OlympusEq.LensType]   [Byte
[OlympusEq.LensSerialNumber]    [514]   [0x0202]    [OlympusEq] [Exif.OlympusEq.LensSerialNumber
[Panasonic.LensType]    [81]    [0x0051]    [Panasonic] [Exif.Panasonic.LensType]   [Ascii
[Panasonic.LensSerialNumber]    [82]    [0x0052]    [Panasonic] [Exif.Panasonic.LensSerialNumber
[PentaxDng.LensType]    [63]    [0x003f]    [Pentax]    [Exif.Pentax.LensType]  [Byte]  
[Pentax.LensType]   [63]    [0x003f]    [Pentax]    [Exif.Pentax.LensType]  [Byte]  [Lens type
[Samsung2.LensType] [40963] [0xa003]    [Samsung2]  [Exif.Samsung2.LensType]    [Short] 
[Sony1.LensID]  [45095] [0xb027]    [Sony1] [Exif.Sony1.LensID] [Long]  [Lens identifier
[Sony2.LensID]  [45095] [0xb027]    [Sony1] [Exif.Sony1.LensID] [Long]  [Lens identifier
[SonyMinolta.LensID]    [268]   [0x010c]    [Minolta]   [Exif.Minolta.LensID]   [Long]  
[Sony2010e.LensType2]   [6291]  [0x1893]    [Sony2010e] [Exif.Sony2010e.LensType2]  [Short
[Sony2010e.LensType]    [6294]  [0x1896]    [Sony2010e] [Exif.Sony2010e.LensType]   [Short
$

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

Bash



2020-Dec-6, 15:01IMaEA

Page 115 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

There are a couple of Exif tags defined in Exif 2.2:

Tag Type Description

Exif.Photo.LensSpecification Rational Focal length min, max

Exif.Photo.LensModel Ascii

Exif.Photo.LensSerialNumber Ascii

Lens in Exif



2020-Dec-6, 15:01IMaEA

Page 116 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

For a discussion about Nikon see: https://github.com/Exiv2/exiv2/issues/743#issuecomment-473409909

TOC

C++ Lens Recognition

https://github.com/Exiv2/exiv2/issues/743%23issuecomment-473409909


2020-Dec-6, 15:01IMaEA

Page 117 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

I/O in Exiv2 is achieved using the class BasicIo and derived classes which are:

Name Purpose Description

BasicIo Abstract Defines methods such as open(), read(), seek() and others

FileIo FILE* Operates on a FILE or memory-mapped file

MemIo DataBuf_t Operates on a memory buffer

RemoteIo Abstract provides support for url parsing

HttpIo http: Simple http 1.1 non-chunked support

FtpIo ftp:,ftps: Requires CurlIo

CurlIo http:,https: Comprehensive remote I/O support

SshIo server:path Requires libssh

StdinIo - Read from std-in

Base64Io data:….. Decodes ascii encoded binary

You will find a simplified version of BasicIo in tvisitor.cpp in the code that accompanies this book. Io has
several constructors. The obvious one is Io(std::string) which calls fopen(). More subtle is Io(io,from,size)
which creates a sub-file on an existing stream. This design deals with embedded files. Most metadata is written
in a format designated by the standards body and embedded in the file. For example, Exif metadata data is
written in Tiff Format and embedded in the file.

The constructor Io(DataBuf&) is used to create an in-memory I/O stream. DataBuf has a read() method to
binary copy from a stream into memory. As we will see, some subfiles are not contiguous in the image and
“chunked” by the image format. For example, JPEG is always chunked into segments of 64k or less. When a
subfile has been chunked it is convenient to copy bytes into a buffer from which we can create an Io source.

Other metadata standards use a similar design. XMP is embedded XML, an Icc Profile is a major block of
technology. Exiv2 knows how to extract, insert, delete and replace an Icc Profile. It knows nothing about the
contents of the Icc Profile. With Xmp, Exiv2 uses Adobe’s XMPsdk to enable the Xmp data to be modified.

Exiv2 has an abstract RemoteIo object which can read/write on the internet. For http, there is a basic
implementation of the http protocol in src/http.cpp. For production use, Exiv2 should be linked with libcurl.
The reason for providing a “no thrills” implementation of http was two fold. Firstly, it enabled the project to
proceed rapidly without learning the curl API. Secondly, I wanted all versions of the exiv2 command-line to
have http support as I thought it would be useful for testing as we could store video and other large files
remotely.

The MemIo class enables memory to be used as a stream. This is fast and convenient for small temporary files.
When memory mapped files are available, FileIo uses that in preference to FILE*. When the project started in

5 I/O in Exiv2



2020-Dec-6, 15:01IMaEA

Page 118 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

2004, memory-mapped files were not provided on some legacy platforms such as DOS. Today, all operating
systems provide memory mapped files. I’ve never heard of Exiv2 being used in an embedded controller,
however I’m confident that this is feasible. I’ve worked on embedded controllers with no operating system
and only a standard “C” io library. Exiv2 can be built for such a device.

Most camera manufacturers are large corporations. I’m sure they have their own firmware to handle Exif
metadata. However, the world of photography has an ever growing band of start-ups making amazing devices
such as Go-Pro. One day I’ll hear that somebody is cycling around on top of Mt Everest with Exiv2 running on
top of their head! One of our users is an astronomer at NASA. I’ve never heard that Exiv2 has flown in space,
however one day it might. I will say with pride that Exiv2 is out of this world!

When available, Exiv2 uses memory mapped files. This is not a good idea for several reasons. Firstly, image
editing applications can sit for days with a file open. For example, a GIMP user may open a file on Monday
and it may be still be open several days later. In the meanwhile things have changed on the network. Secondly,
memory mapped files on Windows are locked by the operating system. This causes problems with the virus
checker. Thirdly, it’s possible for another application to modify a file which is memory mapped. Exiv2 has
copied the metadata into memory and can have stale/obsolete data.

The reason for using memory mapped files was for the convenience of converting offsets into memory
addresses. Imperial College have 90GByte Tiffs from medical imaging products. We have to map 90GBytes.
And it gets worse, some file handlers allocate and copy the file before processing. As we can see in tvisitor.cpp,

Using memory mapped files



2020-Dec-6, 15:01IMaEA

Page 119 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

it’s possible to navigate the metadata in huge files with very little I/O. Memory Mapped files for metadata
processing have turned out to have sad consequences.

Exiv2 is very reliable at writing files which conform to standards. The way in which this is achieved is to by
calling image->writeMetata() which delegates to the handlers writeMetata().

Because the handler understands the structure of the image, he writes a temporary in memory copy of the
image. It proceeds to parse the image and copy the data to the temporary file. When it arrives at each of the
four metadata blocks (Exif, ICC, IPTC and XMP) it calls the serializer to create a buffer of data which is
injected into the temporary image. When it arrives the EOF on the original file, if no error has been detected it
calls io->transfer() on the temporary image. The operation transfer() copies the bytes from the temporary
stream to the permanent file.

This method is very robust and reliable. For very very files (for example, 100GB medical imaging file), this
places huge demands on memory. For remote file, it requires every byte from the remote location to be copied
to the temporary file and subsequently transferred back to the remote location. One day a project will be
undertaken to stress test remote IO on HUGE files and more will be understood about the performance and
optimisation that can be undertaken.

When Exiv2 rewrites an image, it determines the writeMode to determines the writeMode which are:

1. Non-intrusive The metadata is updated in-place. For performance reasons, this the default as it means
that metadata can be updated by modifying a bytes in the original file. For example, a common metadata
edit is to change the date in Exif.Image.DateTime. Non-intrusive write mode is designed to ensure this is
performed very quickly.

2. Intrusive The metadata is totally re-written in memory. This always occurs if there are any changes in the
makernote. It will always occur if any tag edited tag requires more storage than in the original file.

Write Mode is really clever, however it’s scope is limited to writing Tiff images (and therefore similar Raw
formats such as DNG, CR2 and NEF), only a small part of the file is written as a Tiff (the Exif metadata) and
the image handler must use the io()->transfer() mechanism discussed above.

In Chapter 5, I discuss the use of a block map to track small areas of the file which are in use. I’m confident that
architecture could be developed to vastly reduce the I/O involved in updating the metadata in a file. 5. I/O in
Exiv2

TOC

Writing Files

Intrusive and NonIntrusive Write Mode

Using a Block Map to track changes to the file.



2020-Dec-6, 15:01IMaEA

Page 120 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

I don’t know much about the image previews. Previews are usually JPEG encoded and have no metadata.
Exiv2 has no code to edit previews in images. About all that I know about previews is that the library finds
them and creates a vector of thumbnails. Like most of Andreas' code, the Preview code works well and has
seldom required attention.

There are significant challenges in finding the previews as manufacturers use a variety of techniques. In
particular, they often store an offset to a preview in a makernote, or some other devious location. In
consequence, it’s almost impossible to re-write the file without the risk of losing the preview. This problem is
compounded by the JPEG 64k limit in a single segment. Digital Cameras and Smart Phones are now a huge
business and JPEG is the most popular image format. Regrettably, JPEG is a 30 year old standard which was
conceived when dinosaurs roamed the earth. A global agreement to support Adobe’s ad-hoc JPEG extension
could easily address this issue. The inertia of the industry is colossal.

I find it incredible, yet unsurprising, that in an industry which talks about inovation and development can be
so resistant to change. Small changes that would serve their industry. A friend of mine in Silicon Valley sat on a
standards committee for video encoding. He told me about a meeting in which something absurd was
proposed and he decided, although he seldom spoke, to speak against it. He couldn’t let the issue pass. He
said to me with a war-comic German accent. “So, I took zee lugar and I aimed carefully and I squeezed zee trigger.
The bullet flew fast and straight and hit me between the eyes.”. The opposition he encountered was breathtaking.
Craziness ends up in standards because of the politics of the Standards Committee. So that’s how we end up
with several different designs to enable Exif, ICC and XMP data to be chunked in a JPEG. And the mess with
Lens Recognition. And the mess with hundreds of similar yet different image formats.

dmpf.cpp finds it. So, we know it is 4448 bytes into the file and the Exif Tiff is 15288 bytes and begins at 12. So
it’s in there, but where? I don’t know. More research needed.

TOC

6 Image Previews

786 rmills@rmillsmm-local:~/temp/foo $ cp ~/Stonehenge.jpg .
787 rmills@rmillsmm-local:~/temp/foo $ exiv2 -ep --verbose Stonehenge.jpg 
File 1/1: Stonehenge.jpg
Writing preview 1 (image/jpeg, 160x120 pixels, 10837 bytes) to file ./Stonehenge-preview1.jpg
788 rmills@rmillsmm-local:~/temp/foo $ exiv2 -pS ./Stonehenge-preview1.jpg 
STRUCTURE OF JPEG FILE: ./Stonehenge-preview1.jpg
 address | marker       |  length | data
       0 | 0xffd8 SOI  
       2 | 0xffdb DQT   |     132 
     136 | 0xffc0 SOF0  |      17 
     155 | 0xffc4 DHT   |     418 
     575 | 0xffda SOS  
789 rmills@rmillsmm-local:~/temp/foo $ 

1
2
3
4
5
6
7
8
9
10
11
12
13

.../book/build $ ./dmpf ~/temp/foo/Stonehenge-preview1.jpg | head -1
       0        0: ...._._.........................  ->  ff d8 ff db 00 84 00 ...
.../book/build $ ./dmpf ~/temp/foo/Stonehenge.jpg | grep 'ff d8 ff db 00 84'
  0x1160     4448: __.___...._._...................  ->  00 00 01 00 00 00 ff d8 ff db 00 
.../book/build $ 

1
2
3
4
5

Bash

Bash



2020-Dec-6, 15:01IMaEA

Page 121 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

The Exiv2 API is documented here: https://exiv2.org/doc/ The API is in the Namespace Exiv2. The
Namespace Exiv2::Internal should never be used by application programs and is not revealed to via
<exiv2/exiv2.hpp>. As there are around 300 classes and 3000+ entry points, it’s not possible to discuss the API
in detail here. Instead I will discuss a typical short application: samples/exifprint.cpp. My aim here is to
explain how to use the exiv2 library and provide a high-level overview of how the library operates. The
doxygen generated API Documentation is very good and the code is well laid out and documented.

TOC

7 Exiv2 Architecture

https://exiv2.org/doc/


2020-Dec-6, 15:01IMaEA

Page 122 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

1) The Image Handlers

This code understands the structure of image files. The structure is explained in Chapter 1 of this book.

2) The MetaData parsers

This code understands the structure of the different metadata standards. The structure is explained in Chapter
2 of this book.

3) Manufacturer’s MakerNote handlers

All the manufacturers use variations of the TIFF/IFD format in their makernote. The maker note is parsed by
the TiffParser. The presentation and interpretation of the makenote is handled here. In particular the lens
recognition and preview image handling is dealt with in this code. 4. Lens Recognition. 6. Image Previews

4) TagInfo

This code has definitions for thousands of Exif tags and about 50 IPTC Tags. Xmp metadata is handled by the
XMPsdk. As XMP is Extensible, it doesn’t have a database of known tags. Tags are discussed in detail in
Chapter 6 of this book.

5) BasicIo

This code is responsible for all I/O and is explained in Chapter 5 of this book.

6) Utility and Platform Code

There are utility functions such as ascii 64 encode/decode. There are platform specific functions which manage
interaction with the platform operating system.

7) The Image Object and Image Factory

Applications obtain access to an image object via the Image Factory. The application is expected to call
readMetadata() which causes the image handler to locate metadata and passes it to the metadata handlers for
conversion to a metadatum vector. Metadatum elements are key/value pairs. Metadatum can be manipulated
in memory or presented to the user. If the metadata has been modified, the application should call
writeMetadata() which will cause the reading process to be reversed. The metadatum vector is serialized and
the file is rewritten by the Image Handler.

8) Sample Code and Test Harness

This is discussed here: 8. Test Suite

TOC

7.1 API Overview



2020-Dec-6, 15:01IMaEA

Page 123 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

7.2 Typical Sample Application
// ***************************************************************** -*- C++ -*-
// exifprint.cpp
// Sample program to print the Exif metadata of an image
// g++ -std=c++98 exifprint.cpp -I/usr/local/include -L/usr/local/lib -lexiv2 -o exifprint

#include <exiv2/exiv2.hpp>

#include <iostream>
#include <iomanip>
#include <cassert>

int main(int argc, const char* argv[])
{
    try {
        Exiv2::XmpParser::initialize();
        ::atexit(Exiv2::XmpParser::terminate);

        const char* prog = argv[0];
        const char* path = argv[1];

        if (argc != 2) {
            std::cout << "Usage: " << prog << " [ path | --version ]" << std::endl;
            return 1;
        }

        if ( strcmp(path,"--version") == 0 ) {
            exv_grep_keys_t keys;
            Exiv2::dumpLibraryInfo(std::cout,keys);
            return 0;
        }

        Exiv2::Image::AutoPtr image = Exiv2::ImageFactory::open(path);
        assert(image.get() != 0);
        image->readMetadata();

        Exiv2::ExifData &exifData = image->exifData();
        if (exifData.empty()) {
            std::string error("No Exif data found in file");
            throw Exiv2::Error(Exiv2::kerErrorMessage, error);
        }

        for (Exiv2::ExifData::const_iterator i = exifData.begin(); i != exifData.end(); 
            std::cout << i->key() << " -> " << i->toString() << std::endl;
        }

        return 0;
    } catch (Exiv2::Error& e) {
        std::cout << "Caught Exiv2 exception '" << e.what() << "'\n";
        return -1;
    }
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

C++



2020-Dec-6, 15:01IMaEA

Page 124 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

Only include the file <exiv2/exiv2.hpp>. Do not include individual exiv2 include files because Team Exiv2
may remove or add include files. By only including <exiv2/exiv2.hpp>, you are insulated from changes to the
dependency and existence of individual include files.

You do not need to initialize the exiv2 library. However you have to initialize XMPsdk.

Use the ImageFactory to open the image on a path. Verify that the image is good, then call readMetadata()

The metadata is stored in an STL vector which you can step in the conventional way:

Each enumerated item is of the Exiv2::Exifdatum: https://exiv2.org/doc/classExiv211Exifdatum.html for
which there are many getter functions such as key(), familyName(), count() and toString().

The application samples/addmodel.cpp (add modify delete) illustrates how to manipulate metadata:
https://exiv2.org/doc/addmoddel_8cpp-example.html. Frequently, you can add/modify metadata directly
with code such as:

Include file

#include <exiv2/exiv2.hpp>

#include <iostream>
...

1
2
3
4

Initializing the library

      Exiv2::XmpParser::initialize();
      ::atexit(Exiv2::XmpParser::terminate);

1
2

Opening an image to read metadata

      Exiv2::Image::AutoPtr image = Exiv2::ImageFactory::open(path);
      assert(image.get() != 0);
      image->readMetadata();

      Exiv2::ExifData &exifData = image->exifData();
      if (exifData.empty()) {
          std::string error("No Exif data found in file");
          throw Exiv2::Error(Exiv2::kerErrorMessage, error);
      }

1
2
3
4
5
6
7
8
9

Stepping through the metadata

      for (Exiv2::ExifData::const_iterator i = exifData.begin(); i != exifData.end(); ++
          std::cout << i->tag() << " -> " << i->toString() << std::endl;
      }

1
2
3

Making Changes to the Metadata

      exifData["Exif.Image.Model"] = "Test 1"1

C++

C++

C++

C++

C++

https://exiv2.org/doc/classExiv2_1_1Exifdatum.html
https://exiv2.org/doc/addmoddel_8cpp-example.html


2020-Dec-6, 15:01IMaEA

Page 125 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

To delete metadata, you have to locate the key in the ExifData vector and erase it from the vector.

When you modify metadata using the variable image, you are only changing it in memory. You commit the
changes to storage when you call image->writeMetadata().

The image will be automatically closed when image goes out of scope.

TOC

      Exiv2::ExifKey            key("Exif.Photo.DateTimeOriginal");
      Exiv2::ExifData::iterator pos = exifData.findKey(key);
      if (pos == exifData.end()) {
          throw Exiv2::Error(Exiv2::kerErrorMessage, "Key not found");
      }
      exifData.erase(pos);

1
2
3
4
5
6

Writing modified metada to storage

      image->writeMetadata()1

C++

C++



2020-Dec-6, 15:01IMaEA

Page 126 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

Exiv2 provides a collection of functions to simplify searching for Exif metadata. This is described in detail
here: https://github.com/Exiv2/exiv2/wiki/EasyAccess-API

A typical use case is:

The following EasyAccess Selector Functions are provided:

a-e e-f i-m m-s s-w

afPoint
apertureValue
brightnessValue
contrast
dateTimeOriginal
exposureBiasValue
exposureIndex

exposureMode
exposureTime
flash
flashBias
flashEnergy
fNumber
focalLength

imageQuality
isoSpeed
lensName
lightSource
macroMode
make
maxApertureValue

meteringMode
model
orientation
saturation
sceneCaptureType
sceneMode
sensingMethod

serialNumber
sharpness
shutterSpeedValue
subjectArea
subjectDistance
whiteBalance
 

TOC

7.3 The EasyAccess API

Exiv2::ExifData::const_iterator metadata = Exiv2::whiteBalance(exifData);
if ( metadata != exifData.end() ) {
    metadata->write(std::cout, &exifData);
}

1
2
3
4

C++

https://github.com/Exiv2/exiv2/wiki/EasyAccess-API


2020-Dec-6, 15:01IMaEA

Page 127 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

You can get a list of the API with a command such as:

You can refine that further to discover all the “free” functions of the library which are:

You could refine that to reveal the members of class Exiv2::ExifKey:

7.4 Listing the API

$ nm -g --demangle build/lib/libexiv2.dylib | grep ' T ' | grep Exiv21

$ nm -g --demangle build/lib/libexiv2.dylib | grep ' T ' | grep Exiv2 | grep -v trait | 
0000000000073050 T enforce(bool, Exiv2::ErrorCode)
0000000000107750 T Exiv2::exvGettext(char const*)
000000000012c360 T Exiv2::testVersion(int, int, int)
0000000000072190 T Exiv2::base64decode(char const*, char*, unsigned long)
0000000000071dc0 T Exiv2::base64encode(void const*, unsigned long, char*, unsigned long)
000000000012bd00 T Exiv2::versionNumber()
000000000012bd10 T Exiv2::versionString()
0000000000073fc0 T Exiv2::getProcessPath()
00000000001057f0 T Exiv2::floatToRationalCast(float)
000000000012bfd0 T Exiv2::versionNumberHexString()
0000000000108460 T int Exiv2::gcd<int>(int, int)
0000000000052d80 T Exiv2::errMsg(int)
0000000000071750 T Exiv2::getEnv(int)
00000000000718b0 T Exiv2::to_hex(char)
000000000012c340 T Exiv2::version()
00000000001075f0 T Exiv2::exifTime(char const*, tm*)
00000000000718e0 T Exiv2::from_hex(char)
0000000000072d10 T Exiv2::strError()
0000000000071b80 T Exiv2::urldecode(char const*)
0000000000071980 T Exiv2::urlencode(char const*)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

Bash

Bash



2020-Dec-6, 15:01IMaEA

Page 128 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

TOC

$ nm -g --demangle build/lib/libexiv2.dylib | grep ' T ' | grep ' Exiv2::ExifKey' | grep
00000000000f9f30 T Exiv2::ExifKey::setIdx(int)
00000000000f9a70 T Exiv2::ExifKey::ExifKey(Exiv2::TagInfo const&)
00000000000f9ba0 T Exiv2::ExifKey::ExifKey(std::__1::basic_string...
00000000000f9d00 T Exiv2::ExifKey::ExifKey(Exiv2::ExifKey const&)
00000000000f97f0 T Exiv2::ExifKey::ExifKey(unsigned short, std::__1::basic_string...
00000000000f9830 T Exiv2::ExifKey::ExifKey(Exiv2::TagInfo const&)
00000000000f9aa0 T Exiv2::ExifKey::ExifKey(std::__1::basic_string<char...
00000000000f9bd0 T Exiv2::ExifKey::ExifKey(Exiv2::ExifKey const&)
00000000000f94b0 T Exiv2::ExifKey::ExifKey(unsigned short, std::__1::basic_string...
00000000000f9da0 T Exiv2::ExifKey::~ExifKey()
00000000000f9d80 T Exiv2::ExifKey::~ExifKey()
00000000000f9d30 T Exiv2::ExifKey::~ExifKey()
00000000000f9e00 T Exiv2::ExifKey::operator=(Exiv2::ExifKey const&)
00000000000f9fd0 T Exiv2::ExifKey::familyName() const
00000000000fa240 T Exiv2::ExifKey::defaultTypeId() const
00000000000fa4a0 T Exiv2::ExifKey::idx() const
00000000000f9f70 T Exiv2::ExifKey::key() const
00000000000fa2b0 T Exiv2::ExifKey::tag() const
00000000000fa2e0 T Exiv2::ExifKey::clone() const
00000000000f7880 T Exiv2::ExifKey::ifdId() const
00000000000fa430 T Exiv2::ExifKey::clone_() const
00000000000fa180 T Exiv2::ExifKey::tagDesc() const
00000000000fa070 T Exiv2::ExifKey::tagName() const
00000000000fa0c0 T Exiv2::ExifKey::tagLabel() const
00000000000fa010 T Exiv2::ExifKey::groupName() const
$ 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

Bash



2020-Dec-6, 15:01IMaEA

Page 129 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

A common pattern in the Exiv2 code is the table/function pattern.

Fuction Purpose

cfgSelFct determine which cfg + def of a corresponding array-set to use.

ConvertFct Convert between two keys

CrwEncodeFct
CrwDecode

Encoding/Decoding for CRW

CryptFct Cipher/Decipher Data

EncoderFct
DecoderFct

Encoding/Decoding functions for
Exif, Iptc and XMP data

EasyAccessFct See 7.3 The EasyAccess API

InstanceFct
See Other Exiv2 Classes
Creates new Image instances

LensIdFct Convert lens ID to lens name

NewMnFct Makernote create function for images and groups

NewTiffCompFct Creates TiffGroupStruct’s

PrintFct Print the “translated” value of data

TagListFct Get a function to return an array of tags

It’s not really clear to me why this is done and it feels like C++ being implemented in C.

TOC

7.5 Function Selectors

file:///Users/rmills/gnu/exiv2/team/book/7-8


2020-Dec-6, 15:01IMaEA

Page 130 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

The following test program is very useful for understanding tags:

How Tags are organised:

Element Definition Example

Tag Family.Group.TagName Exif.Image.Model

Family Exif or Iptc or Xmp

Group
There are 106 groups
Further discussed below.

Minolta
MinoltaCs5D…

TagName Can be almost anything TagName is a sub-part of a Group

There isn’t a tag Exif.MinoltaCsNew.ISOSpeed. There is a Exif.MinoltaCSNew.ISO

You can use the program exifvalue to look for a tag in a file. If the tag doesn’t exist in the file, it will report

7.6 Tags in Exiv2

$ taglist --help
Usage: taglist [--help]
           [--group name|
            Groups|Exif|Canon|CanonCs|CanonSi|CanonCf|Fujifilm|Minolta|Nikon1|Nikon2|Nikon3
            Panasonic|Pentax|Sigma|Sony|Iptc|
            dc|xmp|xmpRights|xmpMM|xmpBJ|xmpTPg|xmpDM|pdf|photoshop|crs|tiff|exif|aux|iptc
           ]
Print Exif tags, MakerNote tags, or Iptc datasets

1
2
3
4
5
6
7
8

$ taglist MinoltaCsNew | csv -
[ExposureMode]  [1] [0x0001]    [MinoltaCsNew]  [Exif.MinoltaCsNew.ExposureMode]    [Long
[FlashMode] [2] [0x0002]    [MinoltaCsNew]  [Exif.MinoltaCsNew.FlashMode]   [Long]  [Flash mode
...
[FlashMetering] [63]    [0x003f]    [MinoltaCsNew]  [Exif.MinoltaCsNew.FlashMetering]   
$ 

1
2
3
4
5
6

$ taglist all | grep ISOSpeed$         $ taglist all | grep \\.ISO$
Photo.ISOSpeed                         Casio.ISO
PanasonicRaw.ISOSpeed                  Casio2.ISO
CanonCs.ISOSpeed                       MinoltaCsOld.ISO
CanonSi.ISOSpeed                       MinoltaCsNew.ISO
Casio2.ISOSpeed                        NikonIi.ISO
MinoltaCs5D.ISOSpeed                   NikonSiD300a.ISO
MinoltaCs7D.ISOSpeed                   NikonSiD300b.ISO
Nikon1.ISOSpeed                        NikonSi02xx.ISO
Nikon2.ISOSpeed                        NikonSi01xx.ISO
Nikon3.ISOSpeed                        PentaxDng.ISO
Olympus.ISOSpeed                       Pentax.ISO
Olympus2.ISOSpeed                      Samsung2.ISO
Sony1MltCs7D.ISOSpeed                  Sony1MltCsOld.ISO
                                       Sony1MltCsNew.ISO

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Bash

Bash

Bash



2020-Dec-6, 15:01IMaEA

Page 131 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

“value not set”:

If the tag is not known, it will report ‘Invalid tag’:

Is there a way to report every tag known to exiv2? Yes. There are 5430 known tags:

Let’s discuss why there are 106 groups. There are about 10 camera manufacturers (Canon, Minolta, Nikon etc)
and they use the tag Exif.Photo.MakerNote to store data in a myriad of different (and proprietary standards).

Exiv2 has code to read/modify/write makernotes. All achieved by reverse engineering. References on the web
site. https://exiv2.org/makernote.html

The MakerNote usually isn’t a simple structure. The manufacturer usually has “sub-records” for Camera
Settings (Cs), AutoFocus (Af) and so on. Additionally, the format of the sub-records can evolve and change
with different models from the manufacturer. For example (as above):

So, Minolta have 6 “sub-records”. Other manufacturers have more. Let’s say 10 manufacturers have an
average of 10 “sub-records”. That’s 100 groups.

TOC

$ exifvalue ~/Stonehenge.jpg Exif.MinoltaCsNew.ISO
Caught Exiv2 exception 'Value not set'
$

1
2
3

$ exifvalue ~/Stonehenge.jpg Exif.MinoltaCsNew.ISOSpeed
Caught Exiv2 exception 'Invalid tag name or ifdId `ISOSpeed', ifdId 37'
$

1
2
3

$ for group in $(taglist Groups); do for tag in $(taglist $group | cut -d, -f 1) ; do echo
Image.ProcessingSoftware
Image.NewSubfileType
Image.SubfileType
Image.ImageWidth
...
$ for group in $(taglist Groups); do for tag in $(taglist $group | cut -d, -f 1) ; do echo
    5430    5430  130555
$

1
2
3
4
5
6
7
8
9

$ exifvalue ~/Stonehenge.jpg Exif.Photo.MakerNote
78 105 107 111 110 0 2 ...

1
2

$ taglist Groups | grep Minolta
Minolta
MinoltaCs5D
MinoltaCs7D
MinoltaCsOld
MinoltaCsNew
SonyMinolta
$

1
2
3
4
5
6
7
8

TagInfo

Bash

Bash

Bash

Bash

Bash

https://exiv2.org/makernote.html


2020-Dec-6, 15:01IMaEA

Page 132 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

Tag definitions are not constant. A tag is simply an uint16_t. The Tiff Standard specifies about 50 tags.
Anybody creating an IFD can use the same tag number for different purposes. The Tiff Specification says “TIFF
readers must safely skip over these fields if they do not understand or do not wish to use the information.”.

Exif has to recognise every tag, however it does not need to understand it. In a tiff file, the pixels are located
using the tag StripOffsets. We report StripOffsets, however we don’t read pixel data. When you execute the
exiv2 command-line utility with the argument –unknown, they will be listed. For example:

As we can see, tag == 1 in the Nikon MakerNotes is Version. In Canon MakerNotes, it is CameraSettings. IN
GPSInfo it is GPSLatitudeRef. We need to use the appropriate tag dictionary for the IFD being parsed. The tag

$ exiv2 --unknown -pe ~/Stonehenge.jpg
...
Exif.Nikon3.0x002d                           Short       3  512 0 0
...
$ tvisitor -pUR ~/Stonehenge.jpg  
...
           346 | 0x002d Exif.Nikon.0x2d              |     SHORT |        3 |      1499 
...
$ 

Most MakerNotes contain tags which are unknown to Exiv2. 

If the user wishes to recover data such as the pixels, it is possible to do this with the utility dd.  This is discussed here: 

The known tags in Exiv2 are defined in the TagInfo structure.

```cpp
const TagInfo Nikon1MakerNote::tagInfo_[] = {
 TagInfo(0x0001, "Version", N_("Version"),
 N_("Nikon Makernote version"),
 nikon1Id, makerTags, undefined, -1, printValue),
 TagInfo(0x0002, "ISOSpeed", N_("ISO Speed"),
 N_("ISO speed setting"),
 nikon1Id, makerTags, unsignedShort, -1, print0x0002),

const TagInfo CanonMakerNote::tagInfo_[] = {
 TagInfo(0x0000, "0x0000", "0x0000", N_("Unknown"), canonId, makerTags, unsignedShort, -1, printValue
 TagInfo(0x0001, "CameraSettings", N_("Camera Settings"), N_("Various camera settings"
 TagInfo(0x0002, "FocalLength", N_("Focal Length"), N_("Focal length"), canonId, makerTags, unsignedShort, -1, printFocalLength

const TagInfo gpsTagInfo[] = {
 TagInfo(0x0000, "GPSVersionID", N_("GPS Version ID"),
 N_("Indicates the version of <GPSInfoIFD>. The version is given "
 "as 2.0.0.0. This tag is mandatory when <GPSInfo> tag is "
 "present. (Note: The <GPSVersionID> tag is given in bytes, "
 "unlike the <ExifVersion> tag. When the version is "
 "2.0.0.0, the tag value is 02000000.H)."),
 gpsId, gpsTags, unsignedByte, 4, print0x0000),
 TagInfo(0x0001, "GPSLatitudeRef", N_("GPS Latitude Reference"),
 N_("Indicates whether the latitude is north or south latitude. The "
 "ASCII value 'N' indicates north latitude, and 'S' is south latitude."),
 gpsId, gpsTags, asciiString, 2, EXV_PRINT_TAG(exifGPSLatitudeRef)),

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

Bash

2020-Dec-6, 15:01IMaEA

Page 133 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

0xffff in tagDict in tvisitor.cpp stores the group name of the tags.

TOC

Exiv2 does not decrypt or encrypt any data. The sony tag 0x9402 is used to store FocusPosition and the data is
ciphered. It’s a simple cipher and the code was provided by Phil Harvey. The code is discussed in the detail in
the issue referenced in the code below.

The ArrayCfg structure allows any tag to be decrypted by readMetadata() andn encrypted by writeMetadata().
I believe sony tag 0x9402 is the only tag that takes advantage of this feature of the TiffVisitor.

TOC

This is a story in two parts. Firstly, we have to find metadata which is formatted as a Tiff Entry and I call that
the Metadata Decoder. Some tags are encoded in binary which must be decoded. I call that the Binary Tag
Decoder.

Please read: #988

This PR uses a decoder listed in TiffMappingInfo to decode Exif.Canon.AFInfo. The decoding function

Tag Encryption

// https://github.com/Exiv2/exiv2/pull/906#issuecomment-504338797
static DataBuf sonyTagCipher(uint16_t /* tag */, const byte* bytes, uint32_t size, TiffComponent
{
 DataBuf b(bytes,size); // copy the data

 // initialize the code table
 byte code[256];
 for (uint32_t i = 0 ; i < 249 ; i++) {
 if (bDecipher) {
 code[(i * i * i) % 249] = i ;
 } else {
 code[i] = (i * i * i) % 249 ;
 }
 }
 for (uint32_t i = 249 ; i < 256 ; i++) {
 code[i] = i;
 }

 // code byte-by-byte
 for (uint32_t i = 0 ; i < size ; i++) {
 b.pData_[i] = code[bytes[i]];
 }

 return b;
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

7.7 Tag Decoder

Metadata Decoder

C++

https://github.com/Exiv2/exiv2/pull/988

2020-Dec-6, 15:01IMaEA

Page 134 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

“manufactures” Exif tags such as Exif.Canon.AFNumPoints from the data in Exif.Canon.AFInfo. These tags
must never be written to file and are removed from the metadata in exif.cpp/ExifParser::encode().

Three of the tags created (AFPointsInFocus,AFPointsSelected, AFPrimaryPoint) are bitmasks. As the camera
can have up to 64 focus points, the tags are a 64 bit mask to say which points are active. The function
printBitmask() reports data such as 1,2,3 or (none).

This decoding function decodeCanonAFInfo() added to TiffMappingInfo manufactures the new tags.
Normally, tags are processed by the binary tag decoder and that approach was taken in branch
fix981_canonAf. However, the binary tag decoder cannot deal with AFInfo because the size of some metadata
arrays cannot be determined at compile time.

We should support decoding AFInfo in 0.28, however we should NOT auto-port this PR. We can avoid having
to explicitly delete tags from the metadata before writing by adding a “read-only” flag to TagInfo. This would
break the Exiv2 v0.27 API and has been avoided. There is an array in decodeCanonAFInfo() which lists the
“manufactured” tags such as Exif.Canon.AFNumPoints. In the Exiv2 v0.28 architecture, a way might be
designed to generate that data at run-time.

Please read: #900

There is a long discussion in #646 about this issue and my investigation into how the makernotes are decoded.

The tag for Nikon’s AutoFocus data is 0x00b7

Nikon encode their version of tag in the first 4 bytes. There was a 40 byte version of AutoFocus which decodes
as Exif.NikonAf2.XXX. This new version (1.01) is 84 bytes in length and decoded as Exif.NikonAf22.XXX.

The two versions (NikonAF2 and NikonAF22) are now encoded as a set with the selector in tiffimage_int.cpp

The binary layout of the record is defined in tiff image_int.cpp. For example, AF22 is:

Binary Tag Decoder

History

 extern const ArraySet nikonAf2Set[] = {
 { nikonAf21Cfg, nikonAf21Def, EXV_COUNTOF(nikonAf21Def) },
 { nikonAf22Cfg, nikonAf22Def, EXV_COUNTOF(nikonAf22Def) },
 };

1
2
3
4

C++

https://github.com/Exiv2/exiv2/pull/900
https://github.com/Exiv2/exiv2/pull/646

2020-Dec-6, 15:01IMaEA

Page 135 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

The two versions of the data are encoded in tiffimage_int.cpp

The code to determine which version is decoded is in tiffimage_int.cpp

When the tiffvisitor encounters 0x00b7, he calls nikonAf2Selector() to return the index of the binary array to be
used. By default it returns 0 (the existing nikonAf21Id). If the tag length is 84, he returns 1 for
nikonAf21Id

 extern const ArrayCfg nikonAf22Cfg = {
 nikonAf22Id, // Group for the elements
 littleEndian, // Byte order
 ttUndefined, // Type for array entry
 notEncrypted, // Not encrypted
 false, // No size element
 true, // Write all tags
 true, // Concatenate gaps
 { 0, ttUnsignedByte, 1 }
 };
 //! Nikon Auto Focus 22 binary array - definition
 extern const ArrayDef nikonAf22Def[] = {
 { 0, ttUndefined, 4 }, // Version
 { 4, ttUnsignedByte, 1 }, // ContrastDetectAF
 { 5, ttUnsignedByte, 1 }, // AFAreaMode
 { 6, ttUnsignedByte, 1 }, // PhaseDetectAF
 { 7, ttUnsignedByte, 1 }, // PrimaryAFPoint
 { 8, ttUnsignedByte, 7 }, // AFPointsUsed
 { 70, ttUnsignedShort, 1 }, // AFImageWidth
 { 72, ttUnsignedShort, 1 }, // AFImageHeight
 { 74, ttUnsignedShort, 1 }, // AFAreaXPosition
 { 76, ttUnsignedShort, 1 }, // AFAreaYPosition
 { 78, ttUnsignedShort, 1 }, // AFAreaWidth
 { 80, ttUnsignedShort, 1 }, // AFAreaHeight
 };

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

 { Tag::root, nikonAf21Id, nikon3Id, 0x00b7 },
 { Tag::root, nikonAf22Id, nikon3Id, 0x00b7 },

1
2

Binary Selector

 { 0x00b7, nikon3Id, EXV_COMPLEX_BINARY_ARRAY(nikonAf2Set, nikonAf2Selector1

 int nikonAf2Selector(uint16_t tag, const byte* /*pData*/, uint32_t size, TiffComponent
 {
 int result = tag == 0x00b7 ? 0 : -1 ;
 if (result > -1 && size == 84) {
 result = 1;
 }
 return result;
 }

1
2
3
4
5
6
7
8

The decoder
EXV_CALL_MEMBER_FN(*this, decoderFct)(object);1

C++

C++

C++

C++

C++

2020-Dec-6, 15:01IMaEA

Page 136 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

This function understands how to decode byte-by-byte from const ArrayDef into the Exiv2 tag/values
such as Exif.NikonAF22.AFAreaYPosition which it stores in the ExifData vector.

TOC

2020-Dec-6, 15:01IMaEA

Page 137 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

Exiv2 has an abstract TiffVisitor class, and the following concrete visitors:

Class
Derived
from

Purpose Description

class TiffReader TiffVisitor Reads metadata into memory image->readMetadata()

class TiffFinder TiffVisitor Search an IFD
Finds the “Make” tag 0x010f in
IFD0

class
TiffDecoder

TiffVisitor Decodes metadata To be written

class
TiffEncoder

TiffVisitor Encodes metadata To be written

class TiffCopier TiffVisitor
Visits file and copies to a new
file

image->writeMetadata()

TiffVisitor is the “beating heart” of Exiv2. It is both ingeneous and very difficult to understand. Although I’ve
worked on the Exiv2 code for more than 12 years, it is only in the process of writing this book that I have come
to an (incomplete) understanding of its design.

TiffVisitor is actually a state machine with a stack. The code pushes an initial object on the stack and procedes
to process the element on top of stack until empty. Some tags, such as a makernote push objects on the stack.
Reaching the end of an object, pops the stack. There is a “go” flag to enable the visitor to abort. The TiffReader
creates a vector of objects which are post-processed to create the metadata.

The code in tvisitor.cpp uses the run-time stack to maintain state. It simply recursively invokes the code
necessary to decode a tag. Much simpler and easier to understand. When debugging, you can examine the
stack to understand how/why you arrived at a metadata key/value. TiffVisitor does invoked code recursively
and that can be seen in the debugger. However, the branching is achieved using Function Selectors and much
more difficult to understand.

This is a collection of more than 100 values which are used to track the groups in the MetaData. For example
ifdIdNotSet is an initial defined state (with no metadata), ifd0Id represents IFD0, exifId the Exif IFD and so on.
There are over one hundred groups (as explained in the man page) to deal with every maker and their binary
encoded metadata. The GroupID is a subset of IfdId.

A tag is a 16 bit uint16_t. An Extended tag is a 32 bit uint32t. It’s really a pair of uint16t. The extTag & 0xffff 16
== tag. The high bytes extTag & 0xffff0000 are the extension. It’s usually 0x20000 which represents the root.

7.8 TiffVisitor

IfdId and Group

Tag and ExtendedTag

2020-Dec-6, 15:01IMaEA

Page 138 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

TiffCreator::tiffGroupStruct

The purpose of this table is to generate new objects to be pushed on the TiffVisitor stack.

TiffCreator::tiffTreeStruct

This is the state transition table.

TiffVisitor State Tables and Functions

/*
 This table describes the layout of each known TIFF group (including
 non-standard structures and IFDs only seen in RAW images).

 The key of the table consists of the first two attributes, (extended) tag
 and group. Tag is the TIFF tag or one of a few extended tags, group
 identifies the IFD or any other composite component.

 Each entry of the table defines for a particular tag and group combination
 the corresponding TIFF component create function.
 */
#define ignoreTiffComponent 0
const TiffGroupStruct TiffCreator::tiffGroupStruct_[] = {
 // ext. tag group create function
 //--------- ----------------- ---
 // Root directory
 { Tag::root, ifdIdNotSet, newTiffDirectory<ifd0Id> },

 // IFD0
 { 0x8769, ifd0Id, newTiffSubIfd<exifId> },

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

C++

2020-Dec-6, 15:01IMaEA

Page 139 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

This is a state table used to navigate the metadata heirachy. For example, starting at root, the first IFD wil
create a new TiffDirectory and sets the state to ifd0Id. When tag 0x8769 is encountered, the parser will create
new TiffDirectory and the state becomes exifId.

The “route” from the start of parsing (ifdIdNotSet), via the Tiff-EP tags (ifd0Id), via ExifTag/0x8769, to the
MakerNote/0x927c, to the NikonPicture control is:

When the state machine reaches nikonPcId, it manufactures a newTiffBinaryElement to decode it. This is a
simple binary.

nikonPcCfg is defined as:

/*
 This table lists for each group in a tree, its parent group and tag.
 Root identifies the root of a TIFF tree, as there is a need for multiple
 trees. Groups are the nodes of a TIFF tree. A group is an IFD or any
 other composite component.

 With this table, it is possible, for a given group (and tag) to find a
 path, i.e., a list of groups and tags, from the root to that group (tag).
*/
const TiffTreeStruct TiffCreator::tiffTreeStruct_[] = {
 // root group parent group parent tag
 //--------- ----------------- ----------------- ----------
 { Tag::root, ifdIdNotSet, ifdIdNotSet, Tag::root },
 { Tag::root, ifd0Id, ifdIdNotSet, Tag::root },

1
2
3
4
5
6
7
8
9
10
11
12
13
14

{ Tag::root, ifd0Id, ifdIdNotSet, Tag::root },
{ Tag::root, exifId, ifd0Id, 0x8769 },
{ Tag::root, nikon3Id, exifId, 0x927c },
{ Tag::root, nikonPcId, nikon3Id, 0x0023 },

1
2
3
4

// Nikon3 picture control
{ Tag::all, nikonPcId, newTiffBinaryElement },

1
2

//! Nikon Picture Control binary array - configuration
extern const ArrayCfg nikonPcCfg = {
 nikonPcId, // Group for the elements
 invalidByteOrder, // Use byte order from parent
 ttUndefined, // Type for array entry
 notEncrypted, // Not encrypted
 false, // No size element
 true, // Write all tags
 true, // Concatenate gaps
 { 0, ttUnsignedByte, 1 }
};
//! Nikon Picture Control binary array - definition
extern const ArrayDef nikonPcDef[] = {
 { 0, ttUndefined, 4 }, // Version
 { 4, ttAsciiString, 20 },
 { 24, ttAsciiString, 20 },
...

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

C++

C++

C++

C++

2020-Dec-6, 15:01IMaEA

Page 140 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

The tags associated with nikonPcId are:

This is a very flexible design. Not easy to understand. The design used by tvisitor.cpp is simpler 3.5 Presenting
the data with visitTag().

TOC

 { 57, ttUnsignedByte, 1 } // The array contains 58 bytes
};

18
19

// Nikon3 Picture Control Tag Info
const TagInfo Nikon3MakerNote::tagInfoPc_[] = {
 TagInfo(0, "Version", N_("Version"), N_("Version"), nikonPcId, makerTags, undefined
 TagInfo(4, "Name", N_("Name"), N_("Name"), nikonPcId, makerTags, asciiString, 20, printValue
 TagInfo(24, "Base", N_("Base"), N_("Base"), nikonPcId, makerTags, asciiString, 20, printValue
...
};

1
2
3
4
5
6
7

C++

2020-Dec-6, 15:01IMaEA

Page 141 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

The metadata consists of a key and data.

There are three derived classes of Metadatum: Exifdatum, Xmpdatum and Iptcdatum. These classes hold the
actual data value. For example, in an Exifdatum, it contains the type/count/array from the Tiff Record. There
are three derived classes of Key: ExifKey, XmpKey and IptcKey.

These are vector of the Key/Metadatum pairs. For example ExifData is std::vector. The following snippet from
7.2 Typical Sample Application](#7-2) shows how those are obtained and navigated:

This is implemented using Command in Design Patterns)

The Task Factory is used by the command-line utility exiv2 which supports sub-commands such as print,
adjust, rename and extract. The TaskFactory returns an object with the Task Interface. The TaskFactory has to
be created than then called to find the task runner. There is no equivalent in tvisitor.cpp.

This is implemented using Factory in Design Patterns)

The purpose of the Image Factory is to create and BasicIo object and image handler and return this as an
Image. Every image handler is required to define two global functions isImageFormatType() and
newImageFormat(). For example: isJpegType() and newJpegInstance(). There is a table called the registry
which defines the priority of image handlers and if isImageFormatType() returns true, his companion
newImageFormat() is invoked to create the image object.

The implementation in tvisitor.cpp is simpler and requires no static functions and no static registry.

7.9 Other Exiv2 Classes

The Metadatum and Key classes

The MetaData Classes: ExifData, XmpData and IptcData

Exiv2::Image::AutoPtr image = Exiv2::ImageFactory::open(path);
assert(image.get() != 0);
image->readMetadata();

Exiv2::ExifData &exifData = image->exifData();
if (exifData.empty()) {
 std::string error("No Exif data found in file");
 throw Exiv2::Error(Exiv2::kerErrorMessage, error);
}

for (Exiv2::ExifData::const_iterator i = exifData.begin(); i != exifData.end(); ++i) {
 std::cout << i->key() << " -> " << i->toString() << std::endl;
}

1
2
3
4
5
6
7
8
9
10
11
12
13

The Task Factory

The Image Factory

C++

https://www.oreilly.com/library/view/design-patterns-elements/0201633612/
https://www.oreilly.com/library/view/design-patterns-elements/0201633612/

2020-Dec-6, 15:01IMaEA

Page 142 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

I normally refer to the Image objects as Image Handlers. For example: JpegImage, TiffImage, PngImage. These
are derived from the abstract Image class which offers an interface to the metadata engine. The most commonly
used functions of the Image class are readMetadata() and writeMetadata(). There are various functions such as
pixelWidth() and pixelWidth() which provide easy access properties of the image. Accessing this information
in the MetaData is a little tedious:

To simplify accessing Exif properties which could be defined in various location in the metadata, an easyaccess
API is provide. This is described: 7.3 The EasyAccess API

The Image Parsers are required to provide both decode() and encode() methods which are called by image-
>readMetadata() and image->writeMetadata(). For example:

std::unique_ptr<Image> ImageFactory(std::string path)
{
 TiffImage tiff(path); if (tiff.valid()) return std::unique_ptr<Image> (new TiffImage
 JpegImage jpeg(path); if (jpeg.valid()) return std::unique_ptr<Image> (new JpegImage
 CrwImage crw (path); if (crw.valid()) return std::unique_ptr<Image> (new CrwImage
 PngImage png (path); if (png.valid()) return std::unique_ptr<Image> (new PngImage
 Jp2Image jp2 (path); if (jp2.valid()) return std::unique_ptr<Image> (new Jp2Image
 ICC icc (path); if (icc.valid()) return std::unique_ptr<Image> (new ICC
 PsdImage psd (path); if (psd.valid()) return std::unique_ptr<Image> (new PsdImage
 PgfImage pgf (path); if (pgf.valid()) return std::unique_ptr<Image> (new PgfImage
 MrwImage mrw (path); if (mrw.valid()) return std::unique_ptr<Image> (new MrwImage
 RiffImage riff(path); if (riff.valid()) return std::unique_ptr<Image> (new RiffImage
 RafImage raf (path); if (raf.valid()) return std::unique_ptr<Image> (new RafImage
 return NULL;
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

The Image Object and Image Parsers

Exiv2::ExifKey key("Exif.Photo.PixelXDimension");
if (exifData.findKey(key) != exifData.end()) {
 std::cout << exifData.findKey(key)->toString() << std::endl;
}

1
2
3
4

C++

2020-Dec-6, 15:01IMaEA

Page 143 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

TOC

void OrfImage::readMetadata()
{
 if (io_->open() != 0) {
 throw Error(kerDataSourceOpenFailed, io_->path(), strError());
 }
 IoCloser closer(*io_);
 // Ensure that this is the correct image type
 if (!isOrfType(*io_, false)) {
 if (io_->error() || io_->eof()) throw Error(kerFailedToReadImageData);
 throw Error(kerNotAnImage, "ORF");
 }
 clearMetadata();
 ByteOrder bo = OrfParser::decode(exifData_,
 iptcData_,
 xmpData_,
 io_->mmap(),
 (uint32_t) io_->size());
 setByteOrder(bo);
} // OrfImage::readMetadata

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

C++

2020-Dec-6, 15:01IMaEA

Page 144 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

Exiv2 has several different elements in the test suite. They are:

1. Bash Tests
2. Python Tests
3. Unit Test
4. Version Test

In writing this book, I want to avoid duplicating information from the Exiv2 documentation into this book.
This book is intended to provide an engineering explanation of how the code works and why various design
decisions were chosen. However, this book doesn’t explain how to use Exiv2. How to use execute the test suite
is documented in README.md.

TOC

8 Test Suite

file:///Users/rmills/gnu/exiv2/team/book/README.md

2020-Dec-6, 15:01IMaEA

Page 145 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

As the name implies, these tests were originally implemented as bash scripts. They started life as a collection
of independant scripts which were written by different contributors. Although they all shared the goal of
executing a command and comparing the output to a referenced file, there was no shared code. About 2012, I
refactored the tests and put common code into test/functions.source. All bash tests begin by sourcing this file
which performs environment checks, initialises bash variables and sets up bash functions such as
copyTestFiles, runTest and reportTest.

The bash tests have been rewritten in python. This was done because running bash scripts on windows is
painful for most Visual Studio users. The following script is a prototype in the project proposal to replace the
bash scripts. The implementation in tests/bash_tests/utils.py is considerably more complicated as it emulates
several system utilities including diff, md5sum, grep, xmllint and others. I am very grateful to Leo for the hard

8.1 Bash Tests

#!/usr/bin/env bash
Test driver for geotag

source ./functions.source

(jpg=FurnaceCreekInn.jpg
 gpx=FurnaceCreekInn.gpx
 copyTestFiles $jpg $gpx

 echo --- show GPSInfo tags ---
 runTest exiv2 -pa --grep GPSInfo $jpg
 tags=$(runTest exiv2 -Pk --grep GPSInfo $jpg | tr -d '\r') # MSVC puts out cr-lf lines
 echo --- deleting the GPSInfo tags
 for tag in $tags; do runTest exiv2 -M"del $tag" $jpg; done
 runTest exiv2 -pa --grep GPS $jpg
 echo --- run geotag ---
 runTest geotag -ascii -tz -8:00 $jpg $gpx | cut -d' ' -f 2-
 echo --- show GPSInfo tags ---
 runTest exiv2 -pa --grep GPSInfo $jpg

) > $results 2>&1
reportTest

That's all Folks!
##

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Bash

2020-Dec-6, 15:01IMaEA

Page 146 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

work he performed to port bash_tests to python. Thank You, Leo.

The decision to convert bash scripts such as icc_test.sh to python was taken to achieve the following goals:

1. Cross Platform.
2. Simpler design than tests/system_tests.py.
3. Can be introduced as time permits.
4. No documentation changes!
5. We know the test is identical because we do not touch data/test.out.
6. Eliminate line-ending issues.
7. Eliminate diff, dos2unix, tr, pipes and other unix hackery.
8. Binary output support.

The project proposal is: https://github.com/Exiv2/exiv2/issues/1215

Here’s the prototype in the proposal:

#!/usr/bin/env python3

import os
import shlex
import shutil
import subprocess

def error(s):
 print('**',s,'**')
def warn(s):
 print('--',s)

def chop(blob):
 lines=[]
 line=''
 for c in blob.decode('utf-8'):
 if c == '\n':
 lines=lines+[line]
 line=''
 elif c != '\r':
 line=line+str(c)
 if len(line) != 0:
 lines=lines+line
 return lines

def runTest(r,cmd):
 lines=[]
 try:
 # print('*runTest*',cmd)
 p = subprocess.Popen(shlex.split(cmd), stdout=subprocess.PIPE,shell=False
 out,err = p.communicate()
 lines=chop(out)
 if p.returncode != 0:
 warn('%s returncode = %d' % (cmd,p.returncode))
 except:
 error('%s died' % cmd)

 return r+lines

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

Python

2020-Dec-6, 15:01IMaEA

Page 147 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

 return r+lines

def echo(r,s):
 return r+[s]

def copyTestFiles(r,a,b):
 os.makedirs('tmp', exist_ok=True)
 shutil.copy('data/%s' % a,'tmp/%s' % a)
 shutil.copy('data/%s' % b,'tmp/%s' % b)
 return r

def cut(r,delim,field,lines):
 R=[]
 for line in lines:
 i = 0
 while i < len(line):
 if line[i]==delim:
 R=R+[line[i+1:]]
 i=len(line)
 else:
 i=i+1
 return r+R;

def reportTest(r,t):
 good = True
 R=chop(open('data/%s.out' % t ,'rb').read())
 if len(R) != len(r):
 error('output length mismatch Referance %d Test %d' % (len(R),len(r)))
 good=False
 else:
 i = 0
 while good and i < len(r):
 if R[i] != r[i]:
 error ('output mismatch at line %d' % i)
 error ('Reference: %s' % R[i])
 error ('Test: %s' % r[i])
 else:
 i=i+1
 if not good:
 f=open('tmp/%s.out' % t , 'w')
 for line in r:
 f.write(line+'\n')
 f.close()

 print('passed %s' % t) if good else error('failed %s' %t)

Update the environment
key="PATH"
if key in os.environ:
 os.environ[key] = os.path.abspath(os.path.join(os.getcwd(),'../build/bin'))
 + os.pathsep + os.environ[key]
else:
 os.environ[key] = os.path.abspath(os.path.join(os.getcwd(),'../build/bin'))

for key in ["LD_LIBRARY_PATH", "DYLD_LIBRARY_PATH"]:
 if key in os.environ:
 os.environ[key] = os.path.abspath(os.path.join(os.getcwd(),'../build/lib'))

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

2020-Dec-6, 15:01IMaEA

Page 148 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

TOC

 + os.pathsep + os.environ[key]
 else:
 os.environ[key] = os.path.abspath(os.path.join(os.getcwd(),'../build/lib'))

r=[]
t= 'geotag-test'

warn('%s' % t)
warn('pwd=%s' % os.getcwd())
warn('exiv2=%s' % shutil.which("exiv2"))

jpg='FurnaceCreekInn.jpg'
gpx='FurnaceCreekInn.gpx'

r= copyTestFiles(r,jpg,gpx)
r= echo (r,'--- show GPSInfo tags ---')
r= runTest(r,'exiv2 -pa --grep GPSInfo tmp/%s' % jpg)

r= echo (r,'--- deleting the GPSInfo tags')
tags= runTest([],'exiv2 -Pk --grep GPSInfo tmp/%s' % jpg)
for tag in tags:
 r= runTest(r,'exiv2 -M"del %s" tmp/%s' % (tag,jpg))
r= runTest(r,'exiv2 -pa --grep GPS tmp/%s' % jpg)
r= echo (r,'--- run geotag ---')
lines= runTest([],'geotag -ascii -tz -8:00 tmp/%s tmp/%s' % (jpg,gpx))
r= cut (r,' ',2,lines)
r= echo (r,'--- show GPSInfo tags ---')
r= runTest(r,'exiv2 -pa --grep GPSInfo tmp/%s' % jpg)

reportTest(r,t)

That's all Folks
##

95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

2020-Dec-6, 15:01IMaEA

Page 149 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

Before we proceed to discuss the python tests, I want to thank Dan for his work on this. His framework has
been in service for more than 2 years without issue. The code is robust and flexible. In addition to inventing
the framework, Dan also converted hundreds of bash scripts into python scripts. Thank You, Dan for doing
such a wonderful job.

Here is a typical python test. See https://github.com/Exiv2/exiv2/pull/992. The user provided a test python
file tests/bugfixes/github/test_pr_992.py

The test file is test/data/Sigma_APO_MACRO_180_F3.5_EX_DG_HSM.exv. The tests executes the program
exiv2 -pa --grep lensid/i foo.exv and compares the output to stdout. That’s it.

In this case, there is only one exiv2 command being executed on a single file. Most tests are more involved.
You’ll notice that the variables, commands, stderr, stdout and retval are arrays to make it easy to execute
several commands in a single test. The most common program to run is exiv2, however other programs from
build/bin or system commands can be invoked. You may not pipe data between commands, however you can
redefine stdin/stdout filter decode_output if required.

The system_test class provides useful decorators including class CopyFiles, CopyTmpFiles and DeleteFiles to
manage files.

There are two test suites:

1. test/ are written in bash test/*.sh are the bash scripts
test/data are reference files
test/tmp is used to store script output (for comparison to reference output)

2. tests/ are written in python the tests are run with the command python3 runner.py
tests/bugfixes/ has python scripts containing code and reference output
tests/bash_tests has python scripts which will replace test/*.sh in Exiv2 v0.27.4 and v0.28

8.2 Python Tests

-*- coding: utf-8 -*-

import system_tests

class NikonSigmaLens_APO_MACRO_180_F35_EX_DG_HSM(metaclass=system_tests.CaseMeta):
 url = "https://github.com/Exiv2/exiv2/pull/992"

 filename = "$data_path/Sigma_APO_MACRO_180_F3.5_EX_DG_HSM.exv"
 commands = ["$exiv2 -pa --grep lensid/i $filename"]
 stderr = [""]
 stdout = [""
 """Exif.NikonLd3.LensIDNumber Byte 1 Sigma APO Macro 180mm F3.5 EX DG HSM
"""
]
 retval = [0]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Python

https://github.com/Exiv2/exiv2/pull/992

2020-Dec-6, 15:01IMaEA

Page 150 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

When you add a test, you should choose a class for your test that is unique. You can debug it with Visual
Studio Code (and probably other python debuggers). Test it from the terminal with:

When you’re confident that it’s working, run the complete test suite.

The command: $ make tests executes the command $ cd tests ; python3 runner.py which
recursively searches bugfixes and executes every python file.

TOC

541 rmills@rmillsmbp:~/gnu/github/exiv2/0.27-maintenance/tests $ python3 runner.py --help
usage: runner.py [-h] [--config_file CONFIG_FILE] [--verbose] [--debug] [dir_or_file]

The system test suite

positional arguments:
 dir_or_file root directory under which the testsuite searches for tests or asingle
 file'slocation)

optional arguments:
 -h, --help show this help message and exit
 --config_file CONFIG_FILE
 Path to the suite's configuration file
 --verbose, -v verbosity level
 --debug enable debugging output
542 rmills@rmillsmbp:~/gnu/github/exiv2/0.27-maintenance/tests $

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

$ cd tests
$ python3 runner.py --verbose bugfixes/github/sigma_18_35_DC_HSM.py

1
2

$ cd build
$ make tests # VERBOSE=1 will create more output

1
2

Bash

Bash

2020-Dec-6, 15:01IMaEA

Page 151 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

The unit tests are very useful for testing C++ functions with a well defined input and output. In Chemistry, we
have elements and compounds. The unit tests are good for testing elements of the software. The unit tests are
written in C++ and use the Google Test library. Here’s a typical test progam, extracted from
unitTests/test_futils.cpp

The output is:

To build and execute unit tests:

The unit tests are built into a single executable bin/unit_tests(.exe)

TOC

8.3 Unit Test

#include <exiv2/exiv2.hpp>
#include <exiv2/futils.hpp>

// Auxiliary headers
#include <fstream>
#include <cstdio>
#include <cerrno>
#include <stdexcept>

#include "gtestwrapper.h"

using namespace Exiv2;

TEST(base64decode, decodesValidString)
{
 const std::string original ("VGhpcyBpcyBhIHVuaXQgdGVzdA==");
 const std::string expected ("This is a unit test");
 char * result = new char [original.size()];
 ASSERT_EQ(static_cast<long>(expected.size()+1),
 base64decode(original.c_str(), result, original.size()));
 ASSERT_STREQ(expected.c_str(), result);
 delete [] result;
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

[----------] 1 test from base64decode
[RUN] base64decode.decodesValidString
[OK] base64decode.decodesValidString (0 ms)
[----------] 1 test from base64decode (0 ms total)

1
2
3
4

$ cmake .. -DEXIV2_BUILD_UNIT_TESTS=1
$ cmake --build . --config Release --target unit_tests # or make unit_tests
$ cmake --build . --config Release --target unit_test # or make unit_tests

1
2
3

C++

Bash

2020-Dec-6, 15:01IMaEA

Page 152 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

The version test is more-or-less the output of the command $ exiv2 –verbose –version which produces about 150
lines of output. About 60 lines of the output are a list of pre-registed XMP namespaces and of little interest. So,
the script test/version-test.sh counts and filters out the XMP namespaces.

The implementation of the command $ exiv2 –verbose –version and the version number scheme is discussed in
detail: 11.9 Releases.

8.4 Version Test

#!/usr/bin/env bash
Test driver for exiv2.exe --verbose --version

source ./functions.source

(cd "$testdir"
 # Curiously the pipe into grep causes FreeBSD to core dump!
 if [$(uname) != "FreeBSD"]; then
 runTest exiv2 --verbose --version | grep -v ^xmlns
 echo xmlns entry count: $(runTest exiv2 --verbose --version | grep ^xmlns | wc
 else
 runTest exiv2 --verbose --version
 fi
)

That's all Folks!
##

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

Bash

2020-Dec-6, 15:01IMaEA

Page 153 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

Before getting into a discussion about this, I’d like to thank several collaborators who have contributed to this
part of the book. Joris Van Damme of AWare Systems maintains the BigTiff web-site and was very helpful on
email. This topic was also discussed at: https://github.com/Exiv2/exiv2/issues/1248 and I wish to thank
LeoHsiao1 and kolt54321 for their input.

Almost all the test images in the Exiv2 test have been added in response to bugs or during feature
development. Most of the test files are checked into the repository. There is an svn directory with larger test
images which are downloaded on demand by the test suite. svn://dev.exiv2.org/svn/team/test

As Exiv2 moved from 32 to 64 bits, the size of images has grown. HUGE files > 3GB are commonly used in
medical and space imaging applications. For years, I’ve wanted to undertake a project to test if Exiv2 can
really handle HUGE files. The obvious way to work with them is to generate them on demand.

I’ve looked at several libraries for the purpose of generating HUGE files.

1. libtiff-4 (which supports BigTiff)
2. PIL (python imaging library)
3. FreeImage is a wrapper for libJPEG,libtiff, libpng, LibOpenJPEG, LibJXR, LibRAW, LibWebP and

OpenEXR.

1. Build and install jpeg-6b:

2 Build and install zlib:

3 Download and install libtiff4 from http://download.osgeo.org/libtiff/

4 Build the program create_tiff from the book resources:

You may wish to use the code in CMakeLists.txt to build create_tiff. However most folks have neither -ljpeg

8.5 Generating HUGE images

10.5.1 libtiff-4 with BigTiff support

$ cd ~/gnu/jpeg/jpeg-6b
$ make clean ; ./configure --prefix=/usr/local ; make
$ sudo make install
$ sudo cp j*.h /usr/local/include

1
2
3
4

$ ~/gnu/zlib/zlib-1.2.11
$./configure --prefix=/usr/local
$ make
$ sudo make install

1
2
3
4

$ cd ~/gnu/tiff/libtiff-4.1.1
$ cd build
$ cmake ..
$ sudo make install

1
2
3
4

$ g++ create_tiff.cpp -ltiff -lz -o create_tiff
$./create_tiff
usage ./create_tiff width height path [open-option]

1
2
3

Bash

Bash

Bash

Bash

https://github.com/Exiv2/exiv2/issues/1248
http://download.osgeo.org/libtiff/

2020-Dec-6, 15:01IMaEA

Page 154 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

nor -ltiff installed, so the default CMakeList.txt does not build create_tiff.

5 Testing BigTiff

The parameter open-option defaults to w8 which means “write a BigTiff Little Endian”. Other options useful
are “w4”, “w8b” and “w4b”. The documentation for this is at:
file:///usr/local/share/doc/tiff/html/man/TIFFOpen.3tiff.html

You can create HUGE BigTiff files:

I have not investigated the message TIFFScanlineSize64: Computed scanline size is zero.

PIL is the Python Imaging Library. The clone Pillow is well maintained and documented. It’s very impressive.
Interestingly, PIL has some metadata capability to deal with Exif, XMP, ICC and IPTC data.

.../book $./create_tiff 200 400 foo.tif ; ls -l foo.tif ; build/tvisitor foo.tif | head
TIFFScanlineSize64: Computed scanline size is zero.
-rw-r--r--+ 1 rmills staff 320252 16 Jul 18:39 foo.tif
STRUCTURE OF BIGTIFF FILE (II): foo.tif
.../book $./create_tiff 200 400 foo.tif w4 ; ls -l foo.tif ; build/tvisitor foo.tif | head
TIFFScanlineSize64: Computed scanline size is zero.
-rw-r--r--+ 1 rmills staff 320154 16 Jul 18:40 foo.tif
STRUCTURE OF TIFF FILE (II): foo.tif
.../book $./create_tiff 200 400 foo.tif wb4 ; ls -l foo.tif ; build/tvisitor foo.tif |
TIFFScanlineSize64: Computed scanline size is zero.
-rw-r--r--+ 1 rmills staff 320154 16 Jul 18:40 foo.tif
STRUCTURE OF TIFF FILE (MM): foo.tif
.../book $./create_tiff 200 400 foo.tif wb8 ; ls -l foo.tif ; build/tvisitor foo.tif |
TIFFScanlineSize64: Computed scanline size is zero.
-rw-r--r--+ 1 rmills staff 320252 16 Jul 18:40 foo.tif
STRUCTURE OF BIGTIFF FILE (MM): foo.tif

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

.../book $./create_tiff 80000 20000 foo.tif ; ls -lh foo.tif ; build/tvisitor foo.tif
TIFFScanlineSize64: Computed scanline size is zero.
-rw-r--r--+ 1 rmills staff 6.0G 16 Jul 18:43 foo.tif
STRUCTURE OF BIGTIFF FILE (II): foo.tif
 address | tag | type | count | offset | value
2105032728 | 0x0100 Exif.Image.ImageWidth | LONG | 1 | | 80000
2105032748 | 0x0101 Exif.Image.ImageLength | SHORT | 1 | | 20000
2105032768 | 0x0102 Exif.Image.BitsPerSample | SHORT | 4 | | 8 8 8 8
2105032788 | 0x0103 Exif.Image.Compression | SHORT | 1 | | 1
2105032808 | 0x0106 Exif.Image.PhotometricInte.. | SHORT | 1 | | 2
2105032828 | 0x0111 Exif.Image.StripOffsets | LONG8 | 1 | | 16
2105032848 | 0x0112 Exif.Image.Orientation | SHORT | 1 | | 1
2105032868 | 0x0115 Exif.Image.SamplesPerPixel | SHORT | 1 | | 4
2105032888 | 0x0116 Exif.Image.RowsPerStrip | LONG | 1 | | 320000
2105032908 | 0x0117 Exif.Image.StripByteCounts | LONG8 | 1 | | 6400000000
2105032928 | 0x011c Exif.Image.PlanarConfigura.. | SHORT | 1 | | 1
END: foo.tif
.../book $

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

10.5.1 PIL (python imaging library)

Bash

file:///usr/local/share/doc/tiff/html/man/TIFFOpen.3tiff.html

2020-Dec-6, 15:01IMaEA

Page 155 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

For the moment, I’ve started a little python program to create images. I’ll add options to this. At the moment,
you use it like this:

Both exiv2 and tvisitor parse this file in 0.2 seconds and say “No metadata”.

This library is a wrapper for several open source graphics libraries and can generate PNG, JPEG and other
formats. Regrettably, it appears to be no longer supported and has not been updated since 2018.

The code is available here: https://freeimage.sourceforge.io/download.html

I have successfully built this with Visual Studio and on Linux. I couldn’t get it to build on macOS, although I
think it will build with a little more effort.

I’ve found API documentation here: https://mirrors.dotsrc.org/exherbo/FreeImage3170.pdf

I’ve found a user guide here: http://graphics.stanford.edu/courses/cs148-10-
summer/docs/UsingFreeImage.pdf

I wrote an example program:

$ width=50000 ; height=50000 ; path=foo.png ; ./create_image.py $width $height $path ; ls
-rw-r--r--+ 1 rmills staff 7.0G 17 Jul 14:06 foo.png
STRUCTURE OF PNG FILE (MM): foo.png
$

1
2
3
4

#!/usr/bin/env python3

import sys
from PIL import Image

##
#
def main(argv):
 """main - main program of course"""

 argc = len(argv)
 if argc < 2:
 syntax()
 return

 width = int(argv[1])
 height = int(argv[2])
 path = argv[3]

 img = Image.new('RGB', (width, height), color = 'red')
 img.save(path,compress_level=0)

##
#
if __name__ == '__main__':
 main(sys.argv)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

10.5.3 FreeImage

Bash

Python

https://freeimage.sourceforge.io/download.html
https://mirrors.dotsrc.org/exherbo/FreeImage3170.pdf
http://graphics.stanford.edu/courses/cs148-10-summer/docs/UsingFreeImage.pdf

2020-Dec-6, 15:01IMaEA

Page 156 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

The largest file I produced with freeimage was 1.8gb. I suspect the framebuffer is limited to 32bits (3.2gb).
FreeImage has metadata support to read/write metadata blocks and possibly list key/value pairs.

TOC

// g++ example.cpp -o example -lfreeimage -L.
#include <iostream>
#include <FreeImage.h>
#define WIDTH 600
#define HEIGHT 800
#define BPP 24

using namespace std ;

int main(int argc,const char* argv[])
{
 FreeImage_Initialise();

 FIBITMAP* bitmap = FreeImage_Allocate(WIDTH, HEIGHT, BPP);
 if (bitmap) {
 for (int i=0; i<WIDTH; i++) {
 for (int j=0; j<HEIGHT; j++) {
 RGBQUAD color ;
 color.rgbRed = 0;
 color.rgbGreen = (double) i / WIDTH * 255.0 ;
 color.rgbBlue = (double) j / HEIGHT * 255.0 ;
 FreeImage_SetPixelColor(bitmap,i,j,&color);
 } }
 const char* image = "example.png";
 if (FreeImage_Save(FIF_PNG, bitmap, image, 0)) {
 cout << "Image successfully saved: " << image << endl;
 } else {
 cerr << "Unable to save image!" << endl;
 }
 } else {
 cerr << "Unable to create bitmap!" << endl;
 }

 FreeImage_DeInitialise (); //Cleanup!
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

C++

2020-Dec-6, 15:01IMaEA

Page 157 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

This is discussed: https://github.com/Exiv2/exiv2/issues/890

I believe there are tools to help with this, however I haven’t successfully used them. Let’s define a couple of
terms:

Acronym Meaning Description

API Application Program Interface
How exiv2 appears to its user.
Defined in include/exiv2/exiv2.hpp

ABI Application Binary Interface What libexiv2 requires from the system

9 API/ABI Compatibility

https://github.com/Exiv2/exiv2/issues/890

2020-Dec-6, 15:01IMaEA

Page 158 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

To reveal the API, list all the entry points defined in the library:

To reveal the ABI, list all the unsatisfied entry points:

To reveal the libraries to be dynamically loaded (on macOS):

Shared object dependencies on Linux/Unix/Cygwin/MinGW can be inspected with ldd. Visual Studio Users
can use dumpbin.exe.

To discover which libraries are loaded at run-time:

Tools to reveal API and ABI

00000000002576c0 T _WXMPIterator_DecrementRefCount_1
0000000000257610 T _WXMPIterator_IncrementRefCount_1
0000000000257800 T _WXMPIterator_Next_1
...
000000000002a8f0 T std::__1::basic_istream<char, std::__1::char_traits<char> >&...
000000000008ccd0 T _ini_parse
000000000008cc80 T _ini_parse_file
000000000008c610 T _ini_parse_stream

1
2
3
4
5
6
7
8

 U _XML_Parse
 U _XML_ParserCreateNS
...
 U _time
 U _uncompress
 U _vsnprintf
 U dyld_stub_binder

1
2
3
4
5
6
7

726 rmills@rmillsmbp:~/gnu/github/exiv2/0.27-maintenance/build $ otool -L lib/libexiv2.dylib
lib/libexiv2.dylib:
 @rpath/libexiv2.27.dylib (compatibility version 27.0.0, current version 0.27.3)
 /usr/local/lib/libz.1.dylib (compatibility version 1.0.0, current version 1.2.11)
 /usr/local/lib/libintl.8.dylib (compatibility version 10.0.0, current version 10.2.0
 @rpath/libexpat.1.dylib (compatibility version 1.0.0, current version 1.6.11)
 /usr/lib/libiconv.2.dylib (compatibility version 7.0.0, current version 7.0.0)
 /usr/lib/libc++.1.dylib (compatibility version 1.0.0, current version 902.1.0)
 /usr/lib/libSystem.B.dylib (compatibility version 1.0.0, current version 1281.100.1)
727 rmills@rmillsmbp:~/gnu/github/exiv2/0.27-maintenance/build $

1
2
3
4
5
6
7
8
9
10

34 rmills@ubuntu:~/gnu/github/exiv2/0.27-maintenance/build $ ldd lib/libexiv2.so
 linux-vdso.so.1 (0x00007ffca47e9000)
 libz.so.1 => /lib/x86_64-linux-gnu/libz.so.1 (0x00007f0efd778000)
 libexpat.so.1 => /lib/x86_64-linux-gnu/libexpat.so.1 (0x00007f0efd74a000)
 libpthread.so.0 => /lib/x86_64-linux-gnu/libpthread.so.0 (0x00007f0efd727000)
 libstdc++.so.6 => /lib/x86_64-linux-gnu/libstdc++.so.6 (0x00007f0efd546000)
 libm.so.6 => /lib/x86_64-linux-gnu/libm.so.6 (0x00007f0efd3f7000)
 libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007f0efd205000)
 libgcc_s.so.1 => /lib/x86_64-linux-gnu/libgcc_s.so.1 (0x00007f0efd1e8000)
 /lib64/ld-linux-x86-64.so.2 (0x00007f0efdb99000)
35 rmills@ubuntu:~/gnu/github/exiv2/0.27-maintenance/build $

1
2
3
4
5
6
7
8
9
10
11

Bash

Bash

Bash

Bash

2020-Dec-6, 15:01IMaEA

Page 159 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

727 rmills@rmillsmbp:~/gnu/github/exiv2/0.27-maintenance/build $ bin/exiv2 -vVg library
exiv2 0.27.3
library=/Users/rmills/gnu/github/exiv2/0.27-maintenance/build/lib/libexiv2.0.27.3.dylib
library=/usr/local/lib/libintl.8.dylib
library=/usr/lib/libc++.1.dylib
library=/usr/lib/libSystem.B.dylib
library=/usr/local/lib/libz.1.dylib
library=/usr/local/lib/libexpat.1.6.11.dylib
...
library=/usr/lib/libicucore.A.dylib
library=/usr/lib/libz.1.dylib
728 rmills@rmillsmbp:~/gnu/github/exiv2/0.27-maintenance/build $

1
2
3
4
5
6
7
8
9
10
11
12

Bash

2020-Dec-6, 15:01IMaEA

Page 160 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

This should be done with great caution. If an application requires an entry point that is not defined, it will
usually refuse to launch the application. You should therefore never remove an entry point from a library.
Changing the signature of an API is effectively to remove an entry point and introduced a new entry point.

If a library offers an entry point which is not used by an application, the library will be loaded and the
application will launch.

So, the rules are:

1. Never remove an entry point or data structure.
2. Never change the signature of an entry point or data structure.
3. It is OK to add new entry points and data structures.

Caution: When you add a new entry point or data structure, applications compiled with the new library will
be unable to “downgrade” to an earlier version of the library. Best practice is to never change the API.

Changing the API

2020-Dec-6, 15:01IMaEA

Page 161 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

For Exiv2 v0.27 “dots”, I:

1. Build v0.27 and test
2. Build v0.27.X and test
3. Over-write the v0.27 library with the v0.27.X library and test v0.27

There will of course be test exceptions, however the test suite should run without crashing.
https://github.com/Exiv2/exiv2/issues/890#issuecomment-613611192

TOC

Testing for DLL compatibility

https://github.com/Exiv2/exiv2/issues/890%23issuecomment-613611192

2020-Dec-6, 15:01IMaEA

Page 162 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

10 Security

2020-Dec-6, 15:01IMaEA

Page 163 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

GitHub provides a “Security” tab in the User Interface. You can define a file SECURITY.md to define your
security policy. https://github.com/Exiv2/exiv2/security/policy There are other tabs below security which
deal with Notifications of different kinds. I don’t understand most of the GitHub Security Machinery.

Security alerts are published here: https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=Exiv2 We open an issue
with the label “Security” on GitHub and fix it. It doesn’t get special treatment and the fix will be included in
the next release of the branch.

Exiv2 does not back-port security (or any other fix) to earlier releases of the code. An engineer at SUSE has
patched and fixed some security releases for Exiv2 v0.26 and Exiv2 v0.25 in branches 0.26 and 0.25.

The Exiv2 “dot” releases such as v0.27.2 include security fixes, bug fixes and minor feature and documentation
updates. Exiv2 has never issued a “security release” which would be an existing release PLUS one or more
security PRs. The version numbering scheme is explained here: 11.9 Releases. The design includes provision
for a security release.

I was very impressed by the libssh security process which has provision to issue security notices to third
parties. Exiv2 is not sufficiently resourced to support this capability. If the community decide that Exiv2 must
strengthen its security process, the community will have to provide the necessary resources.

TOC

10.1 Security Policy

https://github.com/Exiv2/exiv2/security/policy
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=Exiv2

2020-Dec-6, 15:01IMaEA

Page 164 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

We received our first CVE from the fuzzing police in July 2017. Not a pleasant experience. It was delivered in a
blog post demanding that we re-write Exiv2 as it was “unsafe”. Needless to say, no resources were being
offered for the re-write, no justification was offered and no explanation why a re-write of 100,000 lines of code
would fix anything.

A couple of years later, Kevin send us four security alerts. When I invited him to solve them, he agreed. He
subsequently wrote this interesting and helpful article.

https://securitylab.github.com/research/how-to-escape-from-the-fuzz

While security is an important matter, the behaviour of the fuzzing police is despicable and very demotivating.
They frequently report false positives which consume/waste resources. None of those people ever say “Thank
You” when something is fixed and never apologise for false positives. They sometimes say something useless
like “I did you a favour because there could have been something wrong.”.

I must also mention that the fuzzing police use special tools that build and instrument the code to detect
suspicious run-time activity. Often, there is no end-user bug report to demonstrate an issue. When they report
an issue, they provide a file called poc = Proof of Concept. Their bug reports are usually totally devoid of
information about how to reproduce the issue and there is no cross-reference with the CVE tracking data-base.

Everything is treated as urgent. All their reports are assigned very high levels of vulnerability. In short, those
people are a pain in the butt and waste enormous amounts of Team Exiv2 engineering resources.

As the fuzzing police maintain their own CVE data base, the number and frequency of security issues is
tracked and published. Their mission in life is negative. I don’t have a good word to say about those peple.

TOC

10.2 The Fuzzing Police

https://securitylab.github.com/research/how-to-escape-from-the-fuzz

2020-Dec-6, 15:01IMaEA

Page 165 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

This topic deserves a book in its own right. It’s easy to think of an Open Source Project as source code. It’s not.
The source code is a major part of the project, however probably only 50% of the effort goes into the code. We
have many stakeholders in a project including: contributors, users, security, distros, and competitors. The
project needs documentation, build, test, bug reporting and many other elements.

You may have seen the sketch in The Life of Brian which begins with John Cleese asking the question “What
have the Romans Ever Done for Us?” and somebody replies The Aqueduct. Within one minute they list Water
Supply, Roads, Schools, Sanitation, Police, Laws, Medicine, Wine and Public Health. It’s much the same with
Open Source. Of course we have source code, however we also have Build, Test, Platform Support,
Documentation, User Support, Security, Release Engineering, Localisation and other matters that require time
and attention.

You are probably not surprised to learn that most stakeholders consider their concern should be the top
priority for the project. The challenge is that there are many stakeholders and therefore many top priorities.
When dealing with a stakeholder’s issue, they frequently say All you have to do is bla bla bla. In my head, I
hear the words in a slightly different order. I hear You have to do it all.

The difficulties of maintaining an open-source project are well explained in this article:
https://steemit.com/opensource/@crell/open-source-is-awful from which I have copied this cartoon:

11 Project Management

https://steemit.com/opensource/@crell/open-source-is-awful

2020-Dec-6, 15:01IMaEA

Page 166 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

I will quote the following as it seems totally true.

If most businesses are using Open Source code for free, how are the developers compensated for that real time and effort?
In the majority of cases the answer is with verbal abuse and emotional blackmail.

The very large projects (the Linux kernel, the Firefox web browser, etc.) end up with a few smart companies realizing it’s
in their self-interest to fund full time development, and most of their work ends up being non-volunteer. They’re not the
problem. The problem is the mid-range to small projects, maintained by volunteers, that get short-shrifted. People don’t
value free.

Not a month goes by without some maintainer of an Open Source project throwing up their hands in frustration and
walking away because of burnout. Burnout caused invariably by the demands that people make of their free time. The code
was free, so why isn’t free support and personalised help available for life???

I am astonished at the verbal abuse I have received. About every three years I receive an email from somebody
I have never met thanking me for my efforts. I get daily emails of criticism and complaint. I will not name a
French Engineer on whose behalf I have spent hundreds of hours. Not once has he expressed appreciation. His
emails and public posts of criticism are brutal.

When somebody provides a patch, they seldom provide test code, update the documentation or modify the
build scripts. The feature is often incomplete. For example, in adding a new platform, nobody has ever
provided platform specific code in src/version.cpp and src/futils.cpp. Sometimes they break all the sample
applications. When I ask them to finish the job, they say: “oh you can do that.”. Nobody ever maintains or
supports their patch. Contributors frequently refuse to modify a patch when asked to do so in a review.

I have found recruiting contributors to be very challenging and difficult. I appreciate the work done by
everybody who has contributed. The future of Exiv2 is a matter for the community. Perhaps this book will
inspire somebody to maintain Exiv2 or write a replacement.

How to be an AB

2020-Dec-6, 15:01IMaEA

Page 167 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

I’ll leave you to figure out what an AB is. It might be Annoying Bikeshedder. They come in different versions.

The first is a DAB who deliberately blocks progress. Before we used GitHub, the only way to release a new
version of Exiv2 was via the web-site. Sure we could tag a version in SVN, however this was passive. I’m not
aware of any central organisation which tracks the versions of projects. So, publishing requires the password
to enable the site to be updated. And there’s only one person who knows the password. There are other
versions of this kind of obstruction. For example, you can own the domain registration or hosting contract and
allow them to expire.

I think the need for a web-site for the project has been mostly replaced by GitHub. We can publish new
releases (and pre-releases). However the effort to transfer all project resources to GitHub is considerable. We
have had complaints about the repository being too big, so we have an SVN repository for team resources such
as old releases, this book, the project logo, minutes of team meetings and so on. And while I understand the
team’s hostility to SVN, no sensible alternative has been proposed.

The first couple of releases I published on GitHub were not instantly tagged. Guess what? Within hours,
somebody complained. People have complained about the version numbering scheme. GitHub automatically
generates bundles when you create a release. Somebody complained about them. Somebody complained that
the pre-release web-site was too similar to the release web-site (although every page is labelled) so I put “Pre-
Release” on the background of every page. You might expect that complaints would include words of
appreciation for the effort to make the release. You’d be wrong. Complaints are normally abrupt. Words such
as Please and Thank You are seldom used by members of the community.

On the subject of web-sites, I must mention DOS attacks. DOS is Denial of Service. Occasionally, exiv2.org will
deliver a message about being severely busy. This is because the web-site is being subjected to about 100 HTTP
get requests per second. Every request is from a different IP address. These attacks can continue for several

2020-Dec-6, 15:01IMaEA

Page 168 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

days. Why does somebody attack exiv2.org in this way? How can you defend exiv2.org from such an attack?
So, we’ll call that MAB for Malicious.

How about TAB which is to change the project tools. Git came close to killing me. I know many people love
Git and think it’s the greatest thing ever invented. I don’t. I worked on Acrobat at Adobe. A big project. When I
retired in 2014, there were about 200 developers who had been working for 20 years on 25 million lines of
code. To build it, you need 100GBytes of free space. How can git handle such a monster when every repos has
100% of the code and 100% of the project history? Nobody has given me an answer.

When we adopted Git, it took me 2 years to figure out how to submit a PR. I purchased the book Pro Git. It
doesn’t cover PRs. So, the only way to submit code is undocumented. I am very grateful to Luis and Andreas S
for helping me with Git. I eventually wrote this on a card:

The funny brown marks were added by our cat Lizzie. I’d just written this card when she arrived in my office
fresh from a hunt in the garden. I don’t know what she did to the card. She’s never done anything like this
before or since. She expressed her opinion of git.

Another flavour is the AAB which I reserve for the fuzzing police. The A stands for Aggressive. I’ve discussed
my dislike of these people here: 10.2 The Fuzzing Police

Or there’s the review mechanism which I’ll dub RAB You insist:

1. All code changes must be approved.
2. No contributor can approve their own change.
3. Nobody reviews or approves any code change.

There are many other forms of AB. For example, there is legal LAB. This involves a legal challenge. You say
“We might be infringing somebody’s patent!”. This is particularly effective as you don’t need to provide
evidence. Even if there is a written legal opinion you can refute that with the words: “The legal opinion has
not been tested in court.”. The case has not been tested in court for the obvious reason that it is not illegal. This

2020-Dec-6, 15:01IMaEA

Page 169 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

show-stopper was used by two contributors to block ISOBMFF support in Exiv2 v0.27.3. I received more than
100 emails from users asking “What is the legal problem?”, so I called a meeting on Zoom and users on 5
continents attended. The two contributors who raised the show-stopper did not bother to turn up, although
one emailed later to say “Apologies. I fell asleep on the couch and missed the meeting.”.

How about this method? You complain about a font being used. We’ll call this FAB. This is very effective
because you’re only asking for a 100% reformat of the book and all the graphics. That’s not much to ask. When
I designed the Exiv2 Logo, a contributor asked for the font to be changed. I proposed alternatives and received
no response.

As for myself, I am a CAB where C stands for clever. However I am an AB and that’s why I’ve found it difficult
to recruit and retain contributors.

There are so many ways to incur the outrage of stakeholders. And so many ways in which people can and do
complain. All in all, working on an open-source project is a thank-less task. When I released v0.25, a
contributor in Peru said on Facebook Robin should get a medal for his work. Exiv2 would have died years ago
without his commitment. So I asked my family to write to the UK Government to propose that I be given an
honour. The family silently refused. Alison comforted me by saying Nobody is ever going to thank you for
working on Exiv2.

There are ways to fix on-line abuse. We could do what the Fuzzing Police do. They do not negotiate with any
project. They arrive unexpectedly and deliver their message. And they track your response and performance.

The Community would be well served by a similar task force to investigate complaints about the behaviour of
stakeholders and maintainers. There are undoubtably stakeholders who would report me. However I would
be able to complain about a stakeholder if I felt they had behaved inappropriately.

Solutions to the issue of ABs

2020-Dec-6, 15:01IMaEA

Page 170 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

For sure, I would not welcome my performance being reviewed. However a fair, honest and independant
review of an issue would be helpful. The stakeholder and I would shake hands and learn from the situation. If
the stakeholder or maintainer do not attend the review, their github account should be suspended.

Another possible solution would be to register a complaint about an individual. In the same way as a bug
report can be opened on a project, it would be helpful to open a complaint about an individual. And that
complaint can only be closed by the person who opened it. I’m fairly sure, we’d soon discover two things:

1. A few people raise many complaints about other people.
2. There are many open complaints about a few people.

While there is no sanction for a stakeholder being unreasonable, bad behaviour will continue. A solution is
possible. If you are thinking I never contribute, therefore this does not affect me!, I ask you to think again if
you use open-source. When maintainers are abused and leave their project, everybody looses out.

Will the Community do something about on-line abuse?

TOC

Exiv2 is written in C++. Prior to v0.28, the code was written to the C++ 1998 Standard and makes considerable
use of STL containers such as vector, map, set, string and many others. The code started life as a 32-bit library
on Unix and today builds on 32 and 64 bit systems running Linux, Unix, macOS and Windows (Cygwin,
MinGW, and 7 editions of Visual Studio). It can be build by GCC or Clang. Although the Exiv2 project has
never supported Mobile Platforms or Embedded Systems, it should be possible to build for other platforms
with modest effort.

The code has taken a great deal of inspiration from the book Design Patterns: Elements of Reusable
Object=Oriented Software.

Starting with Exiv2 v0.28, the code requires a C++11 Compiler. Exiv2 v0.28 is a major refactoring of the code
and provides a new API. The project maintains a series of v0.27 “dot” releases for security updates. These
releases are intended to ease the transition of existing applications in adapting to the new v0.28 API.

TOC

The build code in Exiv2 is implemented using CMake: cross platform make. This system enables the code to be
built on many different platforms in a consistant manner. CMake recursively reads the files CMakeLists.txt in
the source tree and generates build environments for different build systems. For Exiv2, we actively support
using CMake to build on Unix type plaforms (Linux, macOS, Cygwin, MinGW, NetBSD, Solaris and FreeBSD),
and several editions of Visual Studio. CMake can generate project files for Xcode and other popular IDEs.

Exiv2 has dependencies on the following libraries. All are optional, however it’s unusual to build without zlib
and libexpat.

11.1 C++ Code

11.2 Build

https://www.oreilly.com/library/view/design-patterns-elements/0201633612/

2020-Dec-6, 15:01IMaEA

Page 171 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

Name Purpose

zlib Compression library. Necessary to support PNG files

expat XML Library. Necessary to for XMP and samples/geotag.cpp

xmpsdk Adobe Library for xmp. Source is embedded in the Exiv2 code base

libcurl http, https, ftp, ftps support

libssh ssh support

libiconv charset transformations

libintl localisation support

Starting with Exiv2 v0.27, we can use conan to build dependencies. I very much appreciate Luis bringing this
technology to Exiv2 as it has hugely simplified building with Visual Studio. In the CI builders on GitHub,
conan is also used to build on Linux and macOS. At this time (June 2020), I haven’t been able to get conan to
work on Cygwin and/or MinGW/msys2. I expect that will soon be rectified.

Prior to using conan, the build environment for Visual Studio was hand built for Visual Studio 2005 and relied
on Visual Studio to convert to the edition in use. Additionally, source trees for dependencies were required in
specific locations on storage. We did support CMake on Visual Studio, however it required a 500 line cmd file
cmakeBuild.cmd to download and build the dependencies. The effort to create and maintain that apparatus was
considerable.

Conan brings a fresh approach to building dependencies. Every dependancy has a “recipe” which tells conan
how to build a dependency. The recipes are held on servers and are fetched from remote servers on demand.
Exiv2 has a file conanfile.py (written in python) which tells conan which dependencies are required. Conan
fetches the recipe, build the dependency and caches it for future use. When dealing with very large libraries
such as openssl, the recipe might pull prebuilt binaries for your requested configuration. For more modest
libraries (such as expat and zlib), the recipe will fetch the source and build. Conan caches binary dependencies
in your ~/.conan directory. This arrangement means that you seldom build dependencies as they are usually
in the cache.

I have always supported the plan to use CMake as our common build platform and invested a lot of effort in
cmakeBuild.cmd. Using conan with Visual Studio is much superior to our prior methods of working with
CMake and Visual Studio.

Luis has made other very useful contributions to Exiv2. He rewrote most of the CMake code. It’s shorter, more
robust, more flexible and easier to understand. He also introduced CPack which packages both our Source
Bundle and binary builds for public release on https://exiv2.org

The final element of CMake which we have not yet deployed is CTest. Perhaps one day this will be
investigated and integrated into the Exiv2 build environment.

Thank You to Luis for introducing Conan to Exiv2 and all your outstanding work with CMake.

Conan

2020-Dec-6, 15:01IMaEA

Page 172 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

The documentation about using Conan with Exiv2 is in README-CONAN.md

There are numerous build options provided for Exiv2. The documentation for this is in README.md. Most of
the options concern dependencies, the configuration:

Description Choices

build_type debug or release

kind static or shared

configuration 32 or 64

C-runtime shared or static

compiler GCC or Clang or 2008 … 2019

language standard 98 or 11 or 14 or 17

And we have not considered the selection of build dependencies required by the user. For example, support
for PNG, XMP, Localisation, Web Protocols and Character Conversions.

There are a number of convenience options to build packages for release, on-line documentation, unit_tests
and ASAN support. ASAN is the “Address Sanitiser”. When this option is selected, the code is built and
instrumented with address checking. Every memory access is tested before use. This has a considerable
performance penalty and is only intended for test and development purposes. It shouldn’t be used in
production.

An interesting option is BUILD_WITH_CCACHE. This option can dramatically speed up rebuilding by
caching compiled code. If CCache determines that there are no code or configuration changes, the compiled
object from the cache is used. This can accelerate build times by 100x.

While lots of effort has been invested in the CMakeLists.txt and *.cmake files, some users may want something
that has never been investigated by Team Exiv2. For example, we do not support building for ARM
processors. It’s highly likely that Exiv2 can be successfully built for those machines and the recommended way
is to use options such as -DCMAKE_CXX_FLAGS to introduce the necessary compiler and linker options.
Other examples of “possible, yet not supported” are to request Visual Studio to use Clang, or its own CMake
support, or its own Package Manager.

Regrettably there are users who look to Team Exiv2 to support every possible configuration. This is
impossible. The essential thing is that we have built and tested our code on many platforms. Users will always
think of novel ways in which to build and deploy. I worked with a user to build Exiv2 on OS/2. I had no idea
that OS/2 is alive and well.

TOC

Build Options

11.3 Security

file:///Users/rmills/gnu/exiv2/team/book/README-CONAN.md
file:///Users/rmills/gnu/exiv2/team/book/README.md

2020-Dec-6, 15:01IMaEA

Page 173 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

This is discussed in detail here: 10 Security.

The following types of documents used in Exiv2. They are:

Documents Creator Comment

1 The exiv2 man page exiv2.1 man, man2html Unix mark up syntax (troff)

2 User Manuals Markdown User Documentation

3 API Documentation Doxygen From .cpp and .hpp files

4 Web site pages Scripted (mostly)

5 Release Notes Markdown GitHub PRs

6 GitHub Wiki Pages Markdown https://github.com/Exiv2/exiv2.wiki.git

Life would be simpler with a single way to define documents and scripts to propagate changes to their
destination. In some ways, this has been done. However the nature and format of the document classes are
different, and the current arrangements will not yield to much more simplification.

I’m very pleased by Markdown. Perhaps one day, the utility man will support this format as that would
simplify the maintenance of exiv2.1.

This book has been written in markdown, and the User Documentation in the release. Markdown is also used
extensively on GitHub for discussion and the project Wiki pages.

The API documents are generated from comments in the C++ code. Doxygen generates UML diagrams of the
class hierarchy, table of contents, navigation links and more. It does a very nice job with modest effort from
Team Exiv2.

Creating release notes takes quite a lot of time and effort. When Exiv2 v0.28 is released, the GitHub tools will
probably do an adequate job. However while 0.27-maintenance and master are both developed, I feel
manually creating the release notes is a better approach. The Release procedure is discussed here: 11.9 Releases

I don’t like the man page because it’s in UNIX man page troff syntax which is arcane and unfamiliar. However
man pages are very useful and valuable for users. The man page is stored in man/man1/exiv2.1 When editing
the man pages, I inspect the changes with commands such as:

11.4 Documentation

Markdown

Doxygen generated API Documentation

Release Documentation

Exiv2 man page

2020-Dec-6, 15:01IMaEA

Page 174 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

The man pages are converted with man2html for display on https://exiv2.org/manpage.html. In the release
scripts, man page is converted to PostScript and then to PDF as follows:

TOC

This is discussed in detail here: 8 Test Suite.

Exiv2 has sample applications which have their own documentation: README-SAMPLES.md. In Exiv2
v0.27.3, there are 17 samples applications and 19 test programs. The test programs are intended for use by the
test suite and are not installed on the user’s computer.

The following programs are built and installed in /usr/local/bin.

$ cd \<exiv2dir\>
$ env MANPATH=$PWD/man:$MANPATH man exiv2 | grep EXIV2
EXIV2(1) EXIV2(1)
 Nov 6, 2020 EXIV2(1)
$

1
2
3
4
5

$ env MANPATH=$EXIV2HOME/man:$MANPATH man -t p | ps2pdf1

11.5 Testing.

11.6 Samples

Bash

https://exiv2.org/manpage.html
file:///Users/rmills/gnu/exiv2/team/book/README-SAMPLES.md

2020-Dec-6, 15:01IMaEA

Page 175 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

Name Purpose

addmoddel Demonstrates Exiv2 library APIs to add, modify or delete metadata

exifcomment Set Exif.Photo.UserComment in an image

exifdata Prints Exif metadata in different formats in an image

exifprint
Print Exif metadata in images
Miscelleous other features

exifvalue Prints the value of a single Exif tag in a file

exiv2

Command line utility to read, write, delete and modify Exif, IPTC, XMP and ICC image
metadata.
This is the primary test tool used by Team Exiv2 and can exercise almost all code in the
library. Due to the extensive capability of this utility, the APIs used are usually less
obvious for casual code inspection.

exiv2json
Extracts data from image in JSON format.
This program also contains a parser to recursively parse Xmp metadata into vectors and
objects.

geotag Reads GPX data and updates images with GPS Tags

iptceasy Demonstrates read, set or modify IPTC metadata

iptcprint Demonstrates Exiv2 library APIs to print Iptc data

metacopy Demonstrates copying metadata from one image to another

mrwthumb Sample program to extract a Minolta thumbnail from the makernote

taglist Print a simple comma separated list of tags defined in Exiv2

xmpdump Sample program to dump the XMP packet of an image

xmpparse Read an XMP packet from a file, parse it and print all (known) properties.

xmpprint Read an XMP from a file, parse it and print all (known) properties..

xmpsample Demonstrates Exiv2 library high level XMP classes

Most of the programs are about 100 lines of C++ and do simple tasks to demonstrate how to use the library
API. Three of the programs are substantial. They are: exiv2, geotag and exiv2json

The Exiv2 command-line program exiv2 enables users to manipulate metadata in images using most of the
features of the library. Being a general utility, it has about 4000 lines of code. The length of the program proves
the point that it is full featured, however the quantity of code rather obscures the use of the library APIs.

Exiv2 has always resisted the temptation to provide a GUI version of the program as that would involve
considerable cross-platform development and user interface skills. As Andreas Huggel summarised: Exiv2 does

2020-Dec-6, 15:01IMaEA

Page 176 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

depth, not breadth. Providing a GUI would lead the project away from metadata into the world of the User
Experience.

TOC

User Support is very time consuming. I prioritise working with users as the most important aspect of the
project. Occasionally, in the run-up to a release, I will ask a user to wait. However, my default is to deal with
users as quickly as possible. I try to acknowledge and confirm their report within 24 hours and to fix/close
issues in one week.

The reason to give them priority is the importance of users to the project. Without users, the project is dead.
Without support, users will not use the code. I know this is true because I have taken some sabbaticals to deal
with other matters in my life. When I am not active, the number of user reports and requests falls quickly.
When I return from my break, the number of user report immediately increases.

I have been very disappointed by the appreciation shown by users to my attention to their questions. Very few
people have the courtesy to use words like “Please” and “Thank You”. Why is this? I don’t know. Moreover, I
am astonished by the abuse I have encountered. The on-line behaviour of some users is unacceptable. I have
encountered this behaviour from our OEM Engineers when I worked on Adobe PostScript. However, I could
refer that to management at Adobe and at the OEM and the matter would settle. With open-source, I have to
ignore and accept this awful behaviour.

I have wondered if the users who behave this way believe that I am a business and have let them down in
some way. Open source is a community. In reporting a bug, they are participating in the development process.
I usually thank users for reporting issues. It’s sad that they seldom have the courtesy to thank me for fixing the
issue.

A member of my family is the Principal of a College. We were discussing the behaviour of parents of students.
She said the one word you must never use with a parent is No. It’s the same with open source users. It’s pointless to
say No because they will not accept this. A good example is Lens Recognition. The configuration file was
added in 0.26 to enable users to fix lens recognition issues by updating an ascii file. Many users demand that I
fix their lens in C++ to save them a minute to update ~/.exiv2. Saying No is pointless.

On a more positive note about dealing with users, I have enjoyed many on-line discussions with frequent
visitors to exiv2.org. For sure, I include Arnold, Mikayel, Alan and Steve in this group and there are many
more. If you are courteous, I am always pleased to hear from you. We are a community with a shared vision of
working together. Thank You for participating.

TOC

Exiv2 has used three bug tracking systems during its 17 year life. In the early days, issues were stored on a
forum hosted by yahoo. (Who?). About the time that I joined the project (2008), Redmine was installed to track
issues on exiv2.org. I really like Redmine. It has a nice UI with good search, cross referencing, and reporting
tools. I very much appreciated the API to query and download data in JSON format. I had a script to generate

11.7 Users

11.8 Bugs

2020-Dec-6, 15:01IMaEA

Page 177 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

various report to monitor release progress.

We moved the code to GitHub when Exiv2 v0.26 was released in April 2017. I didn’t know that GitHub
provided issue tracking and many other project management tools. We could even consider closing exiv2.org
in future and providing all project resources from GitHub.

I believe the GitHub Rest API provides a mechanism with which we could collect data. I could use that to
generate report similar to my Remine/python/JSON code.

I’m pleased with GitHub. For sure, it’s a “one stop shop” for a project. They provide good tools. The best
aspect of GitHub is that I met Luis and Dan on GitHub. And numerous other frequent contributors
(acknowledged on page 2 of this book). For sure GitHub has brought more order to the world of open-source.

TOC

Releases (both RCs and GMs) are published on GitHub. Users can receive notifications by subscribing an RSS
reader to: https://github.com/exiv2/exiv2/releases.atom. There is a summary of releases here:
https://github.com/Exiv2/exiv2/releases. All releases (both RCs and GMs) are available from exiv2.org at:
https://exiv2.org/archive.html

Making a new release is very time-consuming. The business of performing the builds and updating the web-
site is straightforward. It is totally scripted and easy to perform.

However the time involved in determining the contents of the release, updating the release notes, submitting
all the PRs, testing and documenting is considerable.

Moreover, I like to publish release candidates. I never make code changes between the final release candidate
the Golden Master. Let me define the terminology and the version numbering scheme.

Version Name Status Purpose

0.27.7.3 Exiv2 v0.27.3 GM Golden Master. This is the final and official release.

0.27.3.2 Exiv2 v0.27.3.2 RC2 Release Candidate 2.

v0.27.3.20 Exiv2 v0.27.3.2 RC2 Preview Dry-run for release candidate. For team review.

v0.27.3.81 Exiv2 v0.27.3 Security Fix Security Release

v0.27.3.29 Exiv2 v0.27.3.29 Development Should never be installed for production.

v0.27.4.9 Exiv2 v0.27.4.9 Development Should never be installed for production.

v0.27.99 Exiv2 v0.28 Development Should never be installed for production.

The release procedure is documented here: svn://dev.exiv2.org/svn/team/website/Checklist.txt

It typically takes about 3 months to make a release and consumes 100-400 hours.

In month 1, the release and release notes are developed. Depending on the complexity of the features being

11.9 Releases

https://github.com/Exiv2/exiv2/releases
https://exiv2.org/archive.html

2020-Dec-6, 15:01IMaEA

Page 178 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

added for release, this can be 40 to 200 hours of work. In month 2, we respond to matters arising from RC1. As
with month 1, it’s usually 40-200 hours of work to reach RC2. In month 3, we do nothing. It’s an afternoon’s
work to publish GM and tag the release.

If an issue arrives between RC2 and GM and it is decided to change code, I always accept a schedule delay and
publish RC3.

It’s only fair to say that others will say “Oh, it shouldn’t be so complicated.”. And I agree. It shouldn’t. I’ve
been the Release Engineer for at least 6 releases and have not discovered any tricks to eliminate the work
involved. You could just tag the current development branch, bump the version number and hope for the best.
While we currently have two major branches 0.27-maintenance and master, this isn’t possible. At least half the
PRs and changes in the release are changes which have to be ported from the other branch.

If we reach Exiv2 v0.28, I hope that a further dot release from Exiv2 v0.27-maintenance will never be required.
I suspect we will see Exiv2 v0.27.4 in 2021 and v0.27.5 in 2022 with security fixes which will need to be ported
from master. To reach Exiv2 v0.28, there are numerous fixes in 0.27-maintenance which should be ported from
0.27-maintenance.

This enables application code to easily test for a minimum version of exiv2.

For example, to safely call image->setIccProfile(), this is compile time safe and will not link
Exiv2::Image::setIccProfile() if you are using any version of Exiv2 prior to 0.27.0 when this API was added.

TOC

There are several parts of Exiv2 which are platform specific. Additionally the platform dependent function
getopt() in the C-runtime library is never used.

The command-line handler getopt() is used by the exiv2 command-line program and by
samples/metacopy.cpp, samples/getopt-test.cpp and samples/toexv.cpp. In the early days of Exiv2, getopt()
was provided by the C-runtime library. When support for msvc was added, the code in src/getopt.cpp was
added. Relying on the C-runtime library revealed differences between platforms and between platforms and
src/getopt.cpp. It was decided to ensure consistent behaviour to use src/getopt.cpp on all platforms.

I’m rather proud of the code in src/version.cpp. In addition to reporting the version number, version.cpp

The Macro EXIV2_TEST_VERSION

#define EXIV2_TEST_VERSION(major,minor,patch) \
 (EXIV2_VERSION >= EXIV2_MAKE_VERSION(major,minor,patch))

1
2

#ifdef EXIV2_TEST_VERSION(0,27,0)
 image->setIccProfile(....);
#endif

1
2
3

11.10 Platforms

src/getopt.cpp

src/version.cpp

C++

2020-Dec-6, 15:01IMaEA

Page 179 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

reports the build settings used to compile the code. It also inspects the run-time environment to determine
shared objects which have been loaded. I added this to the test harness because I was suspicious that we were
not testing the correct shared object.

I’ll write more later about how this is achieved.

This file has utility code for dealing with files and paths. For example, there is a base64 encoder/decode which
is used to manage paths of the form data:abc…. There is also a URL parser for decomposing URLs to determine
protocol, serverer, user, password and other URL paraphernalia.

The function std::string getProcessPath() determines the process path and is similar to code in src/version.cpp.

There is a build option EXIV2_ENABLE_WIN_UNICODE which may be used on Windows when building
with Visual Studio. This is useful for applications using wchar_t path strings. I believe this is the default for
most applications using the Qt libraries. This version of the library can be used by other applications such as
command-line utilities which link wmain(). When the library is build with UNICODE path support, the char
versions of the API are also built.

Please be aware that this feature only applies to paths. Using UNICODE in UserComments and other Tags is
explained in the Exiv2 man page and discussed in more detail below under the title Character Set Encoding.

Here is a typical build sequence to build with UNICODE path support for Visual Studio:

When the build finishes, you can inspect the setting and read the export table of ImageFactory::open()
functions as follows. The output presented here has been simplified for presentation in this book.

src/futils.cpp

.../exiv2/0.27-maintenance $ grep -e ') {' -e getProcessPath src/futils.cpp | grep -v if
 char to_hex(char code) {
 char from_hex(char ch) {
 std::string urlencode(const char* str) {
 char* urldecode(const char* str) {
 void urldecode(std::string& str) {
 int base64encode(const void* data_buf, size_t dataLength, char* result, size_t resultSize
 long base64decode(const char *in, char *out, size_t out_size) {
 Protocol fileProtocol(const std::string& path) {
 Protocol fileProtocol(const std::wstring& path) {
 std::string pathOfFileUrl(const std::string& url) {
 std::wstring pathOfFileUrl(const std::wstring& wurl) {
 std::string getProcessPath()
.../exiv2/0.27-maintenance $

1
2
3
4
5
6
7
8
9
10
11
12
13
14

UNICODE path support

>cd <exiv2dir>
>mkdir build && cd build
build>conan install .. --profile msvc2019Release --build missing
build>cmake .. -G "Visual Studio 16 2019" -DEXIV2_ENABLE_WIN_UNICODE=On
build>cmake --build . --config Release

1
2
3
4
5

Bash

2020-Dec-6, 15:01IMaEA

Page 180 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

Caution: You should use the “Developer Command Prompt” in Visual Studio Studio to ensure you have the utilities
dumpbin and undname on your path. To filter the output with grep, you will need to ensure grep is on your PATH.

Performing the same tests on a default build (without UNICODE path support), shows one less entry point
because the library does not provide the UNICODE entry-point Exiv2::ImageFactory::open(std::wstring,const
bool&).

The UNICODE library has been build with both wstring and string entry points. All samples (except
exifprint.cpp) are built to use the char entry points, so you can the test suite runs.

The test suite passes because our test image paths do not need UNICODE path support. See README.md for
more information about running the test suite.

When you build the library with UNICODE path support, the sample program samples/exifprint.cpp is built
as a UNICODE application. You can observe the UNICODE path support in the following way:

When you build the library with UNICODE path support, wchar_t versions of the following APIs are built:

>cd <exiv2dir>
>mkdir build && cd build
build>bin\exiv2 -vVg unicode
exiv2 0.27.3
processpath=C:\Users\rmills\gnu\github\exiv2\0.27-maintenance\build\bin
executable=C:\Users\rmills\gnu\github\exiv2\0.27-maintenance\build\bin\exiv2.exe
library=C:\Users\rmills\gnu\github\exiv2\0.27-maintenance\build\bin\exiv2.dll
have_unicode_path=1
build>dumpbin/exports bin\exiv2.dll | grep ImageFactory | grep open > foo.txt
Exiv2::Image::auto_ptr Exiv2::ImageFactory::open
... (class std::basic_string<char,struct std::char_traits<char>,class std::allocator<char> >
... const & __ptr64,bool)
Exiv2::Image::auto_ptr Exiv2::ImageFactory::open
...(class std::basic_string<wchar_t,struct std::char_traits<wchar_t>,class std::allocator<wchar_t> >
... const & __ptr64,bool)
Exiv2::Image::auto_ptr Exiv2::ImageFactory::open(unsigned char const * __ptr64,long)
Exiv2::Image::auto_ptr Exiv2::ImageFactory::open(class std::auto_ptr<class Exiv2::BasicIo>)build>

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

build> cmake --build . --config Release --target tests1

build>copy %USERPROFILE%\Stonehenge.jpg %USERPROFILE%\√.jpg
build>bin\exifprint.exe %USERPROFILE%\√.jpg | grep Date
Exif.Image.DateTime 0x0132 Ascii 20 2015:02:18 21:42:57
Exif.Photo.DateTimeOriginal 0x9003 Ascii 20 2015:02:15 12:29:49
Exif.Photo.DateTimeDigitized 0x9004 Ascii 20 2015:02:15 12:29:49
Exif.NikonWt.DateDisplayFormat 0x0003 Byte 1 0
Exif.GPSInfo.GPSDateStamp 0x001d Ascii 11 2015:02:15

build>cd ..\build_no_unicode
build_no_unicode>bin\exifprint.exe %USERPROFILE%\√.jpg | grep Date
build_no_unicode>

1
2
3
4
5
6
7
8
9
10
11

2020-Dec-6, 15:01IMaEA

Page 181 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

This is discussed here: https://github.com/Exiv2/exiv2/issues/1258

Being a native English speaker, I find it difficult to understand the use of other character sets. I understand the
importance of this to users, however I have no experience of typing anything other than 7-bit ascii.

The Exif specification for ASCII states:

2 = ASCII An 8-bit byte containing one 7-bit ASCII code. The final byte is terminated with NULL.

Exiv2 does not enforce the 7-bit condition. You can read/write any 8-bit value, including NUL. This is
discussed: https://github.com/Exiv2/exiv2/issues/1279#issuecomment-689053734

You can use charset= on the ‘Comment’ tags which are:

The format of Exif Comment values include an optional charset specification at the beginning. Comments are
stored as Undefined tags with an 8-byte encoding definition follow by the encoded data. The charset is
specified as follows:

Exiv2::BasicError
Exiv2::FileIo::FileIo
Exiv2::HttpIo::HttpIo
Exiv2::XPathIo::XPathIo
Exiv2::ImageFactory::create
Exiv2::ImageFactory::createIo
Exiv2::fileExists
Exiv2::fileProtocol
Exiv2::ImageFactory::getType
Exiv2::ImageFactory::open
Exiv2::pathOfFileUrl
Exiv2::readFile
Exiv2::ExifThumb::setJpegThumbnail
Exiv2::FileIo::setPath
Exiv2::XPathIo::writeDataToFile
Exiv2::ExifThumbC::writeFile
Exiv2::writeFile
Exiv2::PreviewImage::writeFile

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

Character Set Encoding

714 rmills@rmillsmbp:~/gnu/github/exiv2/0.27-maintenance/build $ taglist ALL | grep '\tComment,'
Photo.UserComment, 37510, 0x9286, Photo, Exif.Photo.UserComment, Comment
GPSInfo.GPSProcessingMethod, 27, 0x001b, GPSInfo, Exif.GPSInfo.GPSProcessingMethod, Comment
GPSInfo.GPSAreaInformation, 28, 0x001c, GPSInfo, Exif.GPSInfo.GPSAreaInformation, Comment
715 rmills@rmillsmbp:~/gnu/github/exiv2/0.27-maintenance/build $

1
2
3
4
5

[charset=Ascii|Jis|Unicode|Undefined] comment
charset=Undefined is the default

$ exiv2 -M'set Exif.Photo.UserComment charset=Ascii My photo' x.jpg
$ exiv2 -pa --grep UserComment x.jpg
Exif.Photo.UserComment Undefined 16 My photo
$ exiv2 -pv --grep UserComment x.jpg
0x9286 Photo UserComment Undefined 16 charset=Ascii My photo

1
2
3
4
5
6
7
8
9

Bash

Bash

Bash

https://github.com/Exiv2/exiv2/issues/1258
https://github.com/Exiv2/exiv2/issues/1279%23issuecomment-689053734

2020-Dec-6, 15:01IMaEA

Page 182 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

See: https://github.com/Exiv2/exiv2/issues/1279#issuecomment-689053734

IPTC Data Section 1 (Envelope) may include a Record 90 (CharacterSet). I know nothing about this record. It
was briefly discussed here: https://github.com/Exiv2/exiv2/issues/1203

I really admire the code in samples/JZon.cpp. The Swedish Engineer who created this made a super-human
effort to fix a bug for me. However, the latest public version of that code has lost his fix. I have spoken with
him about this and we agreed that I would maintain the copy in the samples/. It isn’t in the library. It is
compiled and linked with samples/exiv2json.cpp

TOC

Localisation is documented in README.md.

At different times, we have used different build server technologies.

1. Appveyor, Travis, GitLab and CodeCov
2. My build script ./build.sh
3. Jenkins and buildbot

Those build systems are provided by GitHub and work very well. To use them, you have to check the
appropriate box in the GitHub Branch Settings and add a configuration file to the branch. Exiv2 uses:

$ exiv2 -M'set Exif.Photo.UserComment charset=Unicode \u0052\u006f\u0062\u0069\u006e' x.jpg
$ exiv2 -pa --grep UserComment x.jpg
Exif.Photo.UserComment Undefined 18 Robin
$ exiv2 -pv --grep UserComment x.jpg
0x9286 Photo UserComment Undefined 18 charset=Unicode Robin

$ exiv2 -M'set Exif.GPSInfo.GPSProcessingMethod HYBRID-FIX' x.jpg
$ exiv2 -pa --grep ProcessingMethod x.jpg
Exif.GPSInfo.GPSProcessingMethod Undefined 18 HYBRID-FIX
$ exiv2 -pv --grep ProcessingMethod x.jpg
0x001b GPSInfo GPSProcessingMethod Undefined 18 HYBRID-FIX

9
10
11
12
13
14
15
16
17
18
19
20

Exif Comments and characters outside the Basic Multilingual Plane

IPTC and CharacterSet

JSON Support

11.11 Localisation

11.12 Build Servers

Appveyor, Travis, GitLab and CodeCov

https://github.com/Exiv2/exiv2/issues/1279%23issuecomment-689053734
https://github.com/Exiv2/exiv2/issues/1203
file:///Users/rmills/gnu/exiv2/team/book/README.md

2020-Dec-6, 15:01IMaEA

Page 183 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

CI Configuration Comment

GitLib .gitlab-ci.yml Linux and UNIX

Travis .travis.yml Linux, macOS and UNIX

Appveyor appveyor.yml Visual Studio

Code Cov codecov.yml Linux Code Coverage

I abandoned Jenkins for several reasons:

1. It was insecure on the MacMini and could be hacked.
2. As configured by me, it was invoking a complicated ssh script.
3. I didn’t understand how to trigger Jenkins from GitHub.
4. I didn’t like the Cygwin ssh server which runs the bash shell.

I decided to forget about Jenkins and focus on the ssh script. So build.sh, parses its command arguments,
writes the build script and transfers it by ssh to the appropriate VM. On the machine, rmillsmm, I have VM
such as rmillsmm-w10, rmillsmm-ubuntu, rmillsmm-solaris and so on. On Windows, I use the excellant bitvise
ssh server and the native server on other platforms.

Bitvise is a very solid server. https://www.bitvise.com/ssh-server. It can be configured for a variety of shells. I
use cmd.exe to build on Visual Studio or Cygwin/64 or MinGW/msys2/mingw64. ./build.sh invokes the
batch files cmd64.bat, cygwin64.bat or msys64.bat to configure the environment on the build machine. These
scripts are discussed and documented in README.md.

There are “out of the box” build servers. I evaluated both in 2013.

I didn’t like Google’s buildbot.

I used Jenkins for several years before deciding that it was not working well for me. Please understand that I
have no criticism of Jenkins, my unhappiness was caused by my complicated Cygwin bash script. That script

My build script ./build.sh

503 rmills@rmillsmm-local:~/gnu/exiv2/team/contrib/buildserver $ svn info build.sh
URL: svn://dev.exiv2.org/svn/team/contrib/buildserver/build.sh
...
504 rmills@rmillsmm-local:~/gnu/exiv2/team/contrib/buildserver $./build.sh
usage: ./build.sh { --help | -? | -h | platform | switch | option | location value

platform: all[32] | msvc[32] | linux[32] | macos | cygwin | mingw | unix | freebsd
switch: --source | --debug | --static | --clang | --background
options: --[no]nls | --video | --asan | --status | --[no]unit | --[no]publish
msvc: --2019 | --2017 | --2015 | --2013 | --2012 | --2010 | --2008
location: --server B | --user C | --builds D | --cpp {98 | 11 | 14 | 17} | --stamp stamp
 --github {rmillsmm,github,E} | {--tag tag | --branch branch}
505 rmills@rmillsmm-local:~/gnu/exiv2/team/contrib/buildserver $

1
2
3
4
5
6
7
8
9
10
11
12
13

Jenkins and buildbot

Bash

2020-Dec-6, 15:01IMaEA

Page 184 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

has to invoke cmd.exe to build Visual Studio, then launch bash to run the test scripts.

I am glad to say that in Exiv2 v0.27.3, I studied the test environment and documented how to execute the bash
scripts from cmd.exe on Windows. The 0.27-maintenance branch now has python code which makes it
possible to remove bash from the test. So much of my unhappiness with Jenkins involved running the test
suite and perhaps it’s easier to configure Jenkins.

However, as GitHub provides good CI support, we don’t need Jenkins.

TOC

The source code for Exiv2 resides on GitHub https://github.com/exiv2/exiv2

There are team resources stored on subversion: svn://dev.exiv2.org/svn/team.

Here are most (but not all) of the team directories:

TOC

The website source and release procedures are store in subversion. svn://dev.exiv2.org/svn/team. The release
process is discussed in detail here: 11.9 Releases

TOC

We use several servers:

1. Apache (https://exiv2.org and https://pre-release.exiv2.org)
2. Subversion (svn://dev.exiv2.org/svn/)
3. GitHub (https://github.com/exiv2/exiv2)
4. Redmine (https://redmine.exiv2.org)
5. SSH on the buildserver

11.13 Source Code

731 rmills@rmillsmbp:~/gnu/exiv2/team $ ls -l
drwxr-xr-x+ 73 rmills staff 2336 25 Oct 16:52 book this book
drwxr-xr-x+ 6 rmills staff 192 4 Apr 2020 contrib contributions (including build.sh
drwxr-xr-x+ 11 rmills staff 352 8 Jun 12:02 drawings miscellaneous artwork
drwxr-xr-x+ 7 rmills staff 224 3 Dec 2018 license license discussions
drwxr-xr-x+ 24 rmills staff 768 23 Jul 19:11 logo_files artwork and fonts
drwxr-xr-x+ 7 rmills staff 224 21 Mar 2019 meetings meeting minutes
drwxr-xr-x+ 98 rmills staff 3136 8 Jul 11:26 releases released source and binary builds
drwxr-xr-x+ 4 rmills staff 128 19 May 12:03 rmills my home-made scripts
drwxr-xr-x+ 15 rmills staff 480 8 Jul 11:31 website source for web site and release scripts
732 rmills@rmillsmbp:~/gnu/exiv2/team $

1
2
3
4
5
6
7
8
9
10
11

11.14 Web Site

11.15 Servers

Bash

https://github.com/exiv2/exiv2

2020-Dec-6, 15:01IMaEA

Page 185 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

I am pleased to say that the management of exiv2.org is undertaken my Nehal. I don’t think it’s an onerous
task, however I appreciate having this taken off my back.

TOC

This is discussed in detail here: 9. API/ABI Compatibility

It’s very difficult to recruit people to work on open source. In fact, it’s so difficult that I wonder if open source
can survive in future. Lots of people have made small contributions to Exiv2, however only a hand-full have
made a sustained effort. Furthermore, contributors can disappear for months with no indication of their
intention. I’m not criticising anybody for how they behave, however it’s simply impossible to plan or
schedule. When folks are paid in the office, you can reasonably expect that they will turn up regularly and can
be assigned tasks. This model is invalid in open source.

I believe the large open source projects such as Apache, Clang and Mozilla employ engineers to undertake the
work. I don’t know how they are funded. However, when pay-checks are offered, recruitment is possible in the
market.

A modest project such as Exiv2 has no money. In fact, I pay for the modest expenses such as hosting the web-
site and running a build server on a Mac Mini.

The only major success I have had with recruitment is when Dan and Luis arrived in summer 2017. We
adopted GitHub in April 2017 when Exiv2 v0.26 was released. I wondered if the move to GitHub had
increased the project visibility and Dan and Luis would be the first of many contributors. More than 3 years
later, we have enjoyed contributions from Kevin, Leo and Rosen.

I find the data on OpenHub very interesting: https://www.openhub.net/p/exiv2.

You can spot trends and events in the history:

11.16 API

11.17 Contributors

https://www.openhub.net/p/exiv2

2020-Dec-6, 15:01IMaEA

Page 186 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

Period Comment Period Comment Period Comment

2014‑2020 Growing 2013‑14
I retired and
moved home

2018‑2019 Robin, Luis and Dan

2004‑2008 Andreas 2016‑2017 Robin and Ben 2019
I retired and
contributors spiked

2009‑2012
Andreas and
Robin

2017 Moved to GitHub 2020
I returned for Exiv2
v0.27.3

2012‑2015
Robin and
Neils

2017
Dan and Luis
Joined

2020 I wrote this book

The report provides interesting insight. Andreas remains the top contributor although I am catching him fast.
We don’t monitor the book or release script maintenance on OpenHub. My contributes to that put me well
ahead of Andreas.

A boss once asked me “Do you know the 80/20 rule? 80% of the project is done by 20% of the people!”. For
sure, this is true in Open Source.

So, how are contributors recruited? The answer is I don’t know. For sure, I appreciate the work done by
Andreas, Luis, Dan, Neils and about 20 other wonderful people. Curiously, I’m not aware of any lady
contributors. I only recall one support question asked by a lady.

TOC

11.18 Scheduling

2020-Dec-6, 15:01IMaEA

Page 187 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

This is a major and important topic. Apart from writing code, I’ve spent more time thinking about project
scheduling than any other aspect of Software Engineering.

There are two worlds. There is the perfect world which is inhabited by management. These people live in a
world which is quite different from mine. In their world, the specification is clear, the schedule is realistic,
nobody makes mistakes and everything works. It’s a wonderful place. Sadly, I’ve never had the good fortune
to live in that world.

I worked in a company which, to hide their identity, I will call “West Anchors”. A colleague was giving a
board presentation in which they had a slide:

It is the Policy of West Anchors to get it right first time, every time.

There we have it. Nothing is ever late, nothing is more difficult than expected, all suppliers deliver on time to
specification and nobody is ever sick. When I discussed the project schedule with my boss I asked him why
there was no time in the schedule for bugs and fixes, his response was “There better not be any bugs.” Five
years later, West Anchors were closed by their owners.

I also had the misfortune to work at a company where the boss was an expert in planning. He explained to me
that the only challenge in Software Engineering is to get the schedule right. Everything else was trivial.

So, if you live in the perfect world, you’ll not find anything interesting or useful in this part of the book,
because I’m talking about the less than perfect world in which I live. I usually call it “Reality”.

Another challenge is that many users are perfect and live in this other world where everything works. So users
seldom understand that the open-source project may be populated by people who live in the depressing world
of “Reality”.

Scheduling an open-source project is almost impossible. You are dealing with volunteers. You might think you
know the volunteers, however you don’t. It’s unusual to have even met the people. How can you understand
the pressure and stress in another person’s life when you know so little about their circumstances. And
remember they are volunteers. They can walk off the job if they wish. In a business, management have tools
such as reviews, salary, careers, vacations, bonuses, promotions and lay-offs to manipulate the employees. In
the open-source world, you have none of those tools.

Here are my thought about how to solve the scheduling problem.

The problem is really simple. How to plan large projects and deliver on time to budget.

Currently, planning is based mostly on PERT and descendant technology. Products such as Microsoft Project
are designed to schedule resources and tasks. And indeed it works for some projects and fails hopelessly for
others.

When the London 2012 Olympic Games were bid, the budget was $3 billion. The final cost has been stated as
$20 billion. I have no data to say if there were other costs, such as policing, which are not included in the $20

The Problem

The state of the game

2020-Dec-6, 15:01IMaEA

Page 188 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

billion.

This is rather common. The cost of construction of the aircraft carriers HMS Queen Elizabeth and HMS Prince
of Wales are other high visibility projects in which the plan and reality are very different.

The reason for cost over-runs is that new work items are required that were not known early enough to be in
the plan. We cannot know what we do not know. However there may be a way to calculate the size of the
unknowns at the beginning of a project.

When a project is simple - for example painting your house - it is possible to measure the size of the task and
calculate the quantity of materials and labour required. This method works fine for a well defined project with
quantifiable tasks.

However, if you want your house to be painted in an extra-ordinary way, this method totally fails. Think of
Michael Angelo in the Sistine Chapel in Rome. Michael and the Pope came close to blows in a 20 year struggle
to produce one of the wonders of man’s creativity. Nobody gives a hoot today about the cost. Nobody cares
about how long it took. Nobody can understand why the customer and the contractor were divided over
something as trivial as money.

The reason for the cost over-runs is because the project is recursive. In a simple project, you have a sequence
(or connected graph) of tasks:

Task Task Task

Begin Remove furniture Apply N litres of paint Restore furniture Done

If the project had many rooms (say 10-20), you have to schedule resources (people). You have a finite set of
painters, and you may have more than 1 team of painters. However the basic linear model is not affected.

When you scale to painting something large (like an Aircraft Carrier), two items rapidly emerge to invalidate
the simple model.

1) Requirements Change

The Aircraft Carrier requires stealth paint that hasn’t been invented.

2) The paint task is large

You require training and inspection services to manage quality.

And many other things arrive which were not in the simple model. In the worst case, new tasks can be larger
than the original task. You have an exploding, complex challenge.

To deal with this, you have to start a project inside the project. Something like “Remove furniture” is obvious
in a house. But what would it mean on an Aircraft Carrier?

So, we stay calm and add more items to the project plan. And that’s when and why everything goes wrong.
The plan gets longer and more detailed. However it’s still the same old linear model.

A project is recursive and requires recursive handling

2020-Dec-6, 15:01IMaEA

Page 189 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

My observation is that the project is an assembly of projects. As you develop the project, every line item in the
simple model is a project. And then there are projects inside the projects. For example if special paint is
required for the Aircraft Carrier, that task is probably a complex network of projects involving chemistry,
special machines to apply the paint, and maintenance processes for the ship in service.

Everything. A project is a recursive entity that must be handled with recursive techniques. Fractal Geometry
deals with recursion.

Being a retired Software Engineer, I have often been told “The project is late because you (the engineer) did not
itemise the project properly at the outset.”. Wrong. It’s the inflexible PERT model that cannot handle recursion.

The software industry has a huge and sad collection of projects which have come off the rails. If the bosses had
known at the outset, things would have been different. There are two things we care about passionately:

1. How long is this going to take?
2. How much is this going to cost?

Notice, we don’t get overly bothered about what “it” is. We care about time and money.

If we do not know about the special paint for the Aircraft Carrier, are we upset? No. However the cost and
schedule damage is painful for everybody involved.

Now, we can’t know what we do not know. Is there are a way to calculate the size of the unknowns? There
might be, as I will explain.

When you plan a project, you say “How long did it take to do the last one?”, take into account inflation and
apply optimism “We won’t make the same mistakes again.”. This is very bad thinking. The United Kingdom
has not built an Aircraft Carrier for almost 40 years. Most of the engineers working on HMS Queen Elizabeth
were not born when HMS Invincible sailed to the Falklands.

A whole collection of project planning tools are now used in the software industry. Together they go under the
banner: “Agile” or “Scrum”. Scrum imposes a regime of meetings and reviews on the project team. Several of
these techniques are interesting.

What does this have to do with Fractals?

The State of Project Planning Today

2020-Dec-6, 15:01IMaEA

Page 190 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

Measure Description Observation

Story Points
Task Size
Task Poker

The size of a task is not 1,2,3,4,5 as difficulty increases.
They use the Fibonacci series: 1,2,3,5,8,13,21 … So big
tasks rapidly increase their allocation of resources and
time.

Fibonacci series is
recursive: X(n) = X(n-1)
+ X(n-2) where
X(1),X(2)=1

The Sprint
Step wise linear

Scrum says “we can’t plan everything at once, however
we can complete well defined tasks on sprint schedules
(typically 2 weeks).

I don’t know how
scrum deals with tasks
that are longer than 1
sprint.

Velocity

The team velocity (average story points completed over
the last 3 sprints) are monitored and used to verify that
the team is being neither optimistic nor pessimistic in
their determination of story points for tasks.

Velocity is not
predicted, it is
measured by project
performance. In a
nutshell, it is recursive.

However scrum has a fatal weakness. Nobody knows the size of the total project. The model is fundamentally
inadequate, because it is a monitoring tool and not predictive.

I believe there’s a measure in Fractals called "Roughness” which measures some feature of the recursive item.
If you measure the roughness of animal lungs (which are of course recursive), they are about the same in
Elephants, Humans and Mice. A value of 1.0 implies that the object is perfectly smooth. Higher values
represent the chaotic nature of the item.

I think it’s possible to measure roughness in past projects in addition to the historical performance. So,
although we have never built HMS Queen Elizabeth, we could know from other Naval projects:

1. How much paint/painter/per time unit (the only measure in Microsoft Project)
2. The roughness of painting Naval Ships (projects hiding inside the project)

Both are required to estimate the size of the task. PERT models assume a roughness of 1.0 and that is why it
fails on large projects. No large project has a roughness of 1.0.

We need to do three things:

1. Add roughness to every item in the project plan
2. Collect data to estimate roughness
3. We need a pot of time and money, which I call Contingencies

Contingencies are a % of the whole project that should be used to assign resources as sub-projects emerge. All
items in the project should have contingencies from which additional resources can be allocated. This is non-
confrontational and does not require blame and finger pointing. We knew about the roughness and must plan
for it.

Can we have a single unified model for project planning?

So how can we use this?

2020-Dec-6, 15:01IMaEA

Page 191 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

In the past, I have applied contingencies as big brush stokes to the complete project. If the project is similar to
the last one, contingencies are 10%. If the project involves many unknowns, perhaps it is 300% of the project.

An ex-boss thought 414.159% Factor 3.14159 to walk round the object, then 1.0 for the task itself! The point is
that when you do something for the first time, you will spend time doing work that is subsequently
abandoned. Nothing new can be achieved without trial and error.

Research is required to measure task roughness in past projects to validate this approach.

There are serious limitations with PERT. I only intend to investigate the use of fractals in planning and to
ignore other limitations of PERT such as:

Trouble Observation

PERT assumes that you can itemise
and quantify every task in the project.

If you are investigating something new, you can probably do
neither of these things.

Many projects cannot be quantified.

Why isn’t PERT used:
1. In crime investigation.
2. In medical treatment.
3. In investment management.

You will do abortive work and
encounter road blocks.

Program Managers never plan time for this.
Every innovative project has abortive work.

People are not interchangeable.
People leave, or are assigned to other projects. New team
members require time to come up to speed with the project.

Some tasks have a gestation period.
If you are having a baby, more women won’t reduce the 9
month wait.
Adding people is often counter-productive.

Management, and other project
stakeholders, change goals and
objectives.

The circumstances surrounding the project can change and
have major implications for the project.

Because of the recursive nature of projects, there are serious limitations hiding inside these limitations.

When I retired, I was thinking about doing a PhD in this area and thought it might take 10,000 hours over 5
years. The only tasks that I could define in 2014 were:

1. Write an outline of the project
2. Find a University willing to mentor/supervise the effort
3. Learn all about Fractals
4. Research and publish a thesis
5. Graduate

Other serious limitations with PERT

So what am I going to do about this?

2020-Dec-6, 15:01IMaEA

Page 192 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

What is the roughness of these tasks? Unknown. Graduate is simple. Or is it? Do I need a new kilt? Who’s
going to attend? Where will everybody stay? Even little tasks can grow into projects.

One thing is certain, getting a better approach to project estimation is of enormous importance. We have to do
better. I have tried to set out here an area of investigation that is worthy of attention.

Final words about this. I didn’t undertake a PhD. Instead I have spent 10,000 hours working on Exiv2. This
book is my thesis. The presentation at LGM in Rennes is my defence. My reward is to know that I’ve done my
best.

TOC

I’m not sure there is anything very interesting to be said about this. There are really different types of requests.
For example, adding recognition for one lens may only require one line of C++, a test file and a 10-line python
test script. This is straightforward and can be fixed within hours. At the other extreme is the request to support
ISOBMFF files including HEIF and CR3. This project involves research, code, test, build and documentation
changes. And to make it even more difficult, the Community have challenged the legality of providing the
feature. This feature will take years to complete.

In principle, anybody can develop a feature and submit a PR. In reality, this seldom happens. When this does
happen, the effort required by me and the developer is often about the same. So, being offered code in a PR
often doubles my work-load.

TOC

Every year brings new/different tools. For example: cmake, git, MarkDown, conan and C++11. One of the
remarkable properties of tools you have never used is that they are perfect and solve all known issues, until
you use them. Tools you have never used are bug free and perfect. Or so I am told.

I had an issue with the release bundles for Exiv2 v0.26. My primary development platform is macOS.
Remarkably, the version of tar shipped by Apple puts hidden files in bundles to store file extended attributes. I
didn’t know this until the bundles shipped and a bug report appeared. You cannot see those files on macOS,
because tar on macOS recreates the extended attributes. However there were thousands of hidden files in the
source bundle on Linux. I recreated the bundles as Exiv2 v0.27a and shipped them. There is an environment
variable to suppress this. I believe it is: TAR_WRITER_OPTIONS=–no-mac-metadata.

Case closed. Except for very critical emails about changing bundles checksums.

For v0.27 we adopted CMake to do the packaging. Very nice. Works well. Guess what? CMake produces .tar.gz
files which have these hidden files. Several people emailed to say “You wouldn’t have this problem if you used
CPack.”. 100% wrong. It is a known documented issue in CPack. So, the issue resurfaced because we used
CPack. Additionally, we had three release candidates for v0.27 which were published on 27 October, 15
November and 7 December 2018. v0.27 shipped on 20 December and the bug report arrived on the day after
Christmas Day.

11.19 Enhancements

11.20 Tools

2020-Dec-6, 15:01IMaEA

Page 193 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

I rebuilt the bundles as Exiv2 v0.27.0a and shipped them on 2 January 2019. I updated the build script to
ensure that source bundles are created on Linux.

Please understand that I have nothing against using new tools. However most of the hype surrounding new
tools is nonsense. This has been studied. There are 5 stages in adopting new tools.

There is one recent tool which has surprised and pleased me. I have written this book using markdown and
very pleased with the experience. As Americans say “your mileage may differ!”.

TOC

Licensing is a legal minefield. Exiv2 is licensed under GPLv2. Until Exiv2 v0.26, Andreas offered a commercial
license for Exiv2. The contract between Andreas and users is not the concern of the Exiv2 open-source project.

In the days of the Commercial license, I made no distinction between open-source and commercial license
users when it came to dealing with support and other requests. I felt that the commercial license freed the user
from the obligations of GPL. However, it did not provide priority support, enhancement requests or any other
benefit.

The general subject of the legality of Exiv2 hasn’t been explored. There has been an enormous discussion about
the legality of reading ISOBMFF files. See https://github.com/Exiv2/exiv2/issues/1229.

The ISOBMFF issue has caused me to wonder if Exiv2 is legal at all. I also wonder if any open source is legal!
What makes something legal or illegal? Is everything legal until there is a law which declares it as illegal, or
everything illegal until permitted by legislation? I suspect everything is legal until there is a legal precedent
legislation or court ruling to the contrary.

Dealing with legal matters is not like reporting a bug. Exiv2 is an open-source project and we get a regular
stream of issues reported on https://github.com/exiv2/exiv2. I acknowledge, investigate, reply and close the
issue. By design, the process is focused on resolution. Legal processes are very different. When you ask for

11.21 Licensing

https://github.com/Exiv2/exiv2/issues/1229%23issuecomment-705350266

2020-Dec-6, 15:01IMaEA

Page 194 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

legal advice, you are instigating an open-ended process which will endlessly expand.

TOC

I believe there are some folks maintaining back-ports of Exiv2. Our friend Pascal works on darktable and has
back-ported many features and fixes. Thank You, Pascal for undertaking that chore.

I have to say that the inertia of the Linux Distros is considerable. It can take several years for new releases to
arrive on the platform. I don’t know anything about the distros and I’m not going to judge why it is so
sluggish.

TOC

Without question, dealing with some other projects which use Exiv2 has been very difficult. Folks who have
adopted Exiv2 in their product may feel they are entitled to make enhancement requests, demand fixes,
superior support and other privileges. In a nutshell, they feel entitled. They are not. They are entitled to the
same as all other stakeholders. No more. No less.

TOC

As this is the first and last book I will ever write, I’d like to close the discussion of Project Management with
some thoughts and opinions about how software is developed. Management have been searching for the silver
bullet that will cause projects to deliver on time, to budget, with great performance, few bugs and low cost
maintenance. This search has been proceeding for more than 50 years. We’ve made some progress. However
system complexity out-strips our management and control tools. The challenges are immense.

I’ve seen different approaches used. In the IT world, people involved in system development adopted and
modified the drawing office model. In the drawing office, you have draftsmen working on drawing boards
and engineers working at desks. The engineers do the design and the draftsmen draw it. The systems analyst
was the designer and the programmers created the code. They work in a strict regime of SSADM - the
Standard Structure Analysis and Design Methodology. This is often called “The Waterfall Method”. It’s
horrible. It’s inflexible, slow and very expensive. It’s amazing that anything can be delivered this way.

When I worked at West Anchors, the analysts promoted all the programmers to programmer/analyst. So the
programmer had to do the programming and the work of the analyst. This enabled the analyst to concentrate
on office politics. The QE team at West Anchors didn’t test anything. They approved the test plans written by
the programmer/analyst and they inspected the test logs required to prove that the programmer/analyst had
done all the work. The parrot phrase of everybody who wasn’t a programmer/analyst was “I’m not technical”
which meant “I’m not going to help you, so don’t ask. And, by the way, I am superior to you and you will do
exactly what I tell you to do.”.

Before I retired, the circus started adopting Scrum. Loads of meetings. The project is divided into two-week

11.22 Back-porting

11.23 Partners

11.24 Development

2020-Dec-6, 15:01IMaEA

Page 195 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

sprints. There were two days of review meetings at the end of every sprint. Two days of planning meetings at
the start of every sprint. Daily stand-up meetings which were usually about 1 hour. And I’m sure I’ve
forgotten other pointless meetings. Sometimes people say they are agile. I haven’t figured out what that is. I
think it’s some kind of “Let’s not bother looking ahead. It’ll be great if or when it’s delivered.”. And of course,
all software development engineers (except me) are geniuses who create perfect code and therefore have no
reason to document or help lesser co-workers.

In the last 10 years we have seen AI move out of the lab and into our homes, cars and phones. Probably 50% of
code development time is spent on test related activity. Perhaps in future, AI will undertake more of that work.
Remember it works 7x24, never takes a vacation and works very quickly. I have high hopes that AI can be
used to automate testing in future. However, all coins have two sides and the AI may drown the engineer with
very obscure bugs. In some way, we see this with CVEs discovered by automatic fuzzing libraries.

There is a method of developing code that works for me and that’s to do everything myself. This model doesn’t
scale. However it is effective. Do I create bugs? Of course, I do. However I find and fix them. Many of the best
people with whom I worked in Silicon Valley use this approach. And when I think about it, that’s exactly how
Andreas created Exiv2.

Another method that I believe is very effective is prototyping. Working in a sand-box with a small amount of
code can be very effective to explore and learn. I can say with certainty that I have learned more about
metadata in 12 weeks by writing this book than I discovered by working on the Exiv2 code for 12 years.
Program Management people hate prototyping because it doesn’t have a specification, milestones, deliverables
or schedule.

If you have good folks on the team, the development will be enjoyable and the results will be good. However,
Software Development in large chaotic company such as West Anchors is Russian Roulette with a bullet in
every chamber. Good Luck. I’m happy to be retired.

TOC

2020-Dec-6, 15:01IMaEA

Page 196 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

The latest version of this book and the programs discussed are available for download from:

To download and build these programs:

I strongly encourage you to download, build and install Exiv2. The current (and all earlier releases) are
available from: https://exiv2.org.

There is substantial documentation provided with the Exiv2 project. This book does not duplicate the project
documentation, but compliments it by explaining how and why the code works.

The following two programs args.cpp and dmpf.cpp are based on similar utility programs on the Apollo
Workstatation on which I worked during the 1980s.

The code in the book has a simple test harness in test/run.sh. When you build, you can run the tests with the
command:

12 Code discussed in this book

svn://dev.exiv2.org/svn/team/book1

$ svn export svn://dev.exiv2.org/svn/team/book
$ mkdir book/build
$ cd book/build
$ cmake ..
$ make

1
2
3
4
5

make test

Bash

Bash

https://exiv2.org/

2020-Dec-6, 15:01IMaEA

Page 197 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

The code to implement the tests is in test/run.sh

586 rmills@rmillsmbp:~/gnu/exiv2/team/book/build $ make tests
Scanning dependencies of target tests
20200717_221452.avif passed
args passed
avi.avi passed
avif.avif passed
Canon.cr2 passed
Canon.crw passed
Canon.jpg passed
cr3.cr3 passed
csv passed
dmpf passed
heic.heic passed
IMG1.HEIC passed
IMG_3578.HEIC passed
mrw.mrw passed
NEF.NEF passed
NikonD5300.dcp passed
ORF.ORF passed
Stonehenge.jpg passed
Stonehenge.tiff passed
webp.webp passed

Passed 20 Failed 0

Built target tests
587 rmills@rmillsmbp:~/gnu/exiv2/team/book/build $

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

Bash

2020-Dec-6, 15:01IMaEA

Page 198 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

The CMake code in CMakeLists.txt is:

#!/usr/bin/env bash

pass=0
fail=0

Create reference and tmp directories
if [! -e ../test/data]; then mkdir ../test/data ; fi
if [! -e ../test/tmp]; then mkdir ../test/tmp ; fi

report()
{
 stub=$1
 # if there's no reference file, create one
 # (make it easy to add tests or delete and rewrite all reference files)
 if [! -e "../test/data/$stub"]; then
 cp "../test/tmp/$stub" ../test/data
 fi

 diff -q "../test/tmp/$stub" "../test/data/$stub" >/dev/null
 if ["$?" == "0"]; then
 echo "$stub passed";
 pass=$((pass+1))
 else
 echo "$stub failed"
 fail=$((fail+1))
 fi
}

test every file in ../files
for i in $(ls ../files/* | sort --ignore-case) ; do
 stub=$(basename $i)
 # dmpf and csv are utility tests
 if [$stub == dmpf -o $stub == csv -o $stub == args]; then
 ./$stub ../files/$stub 2>&1 > "../test/tmp/$stub"
 else
 ./tvisitor -pRU "$i" 2&>1 > "../test/tmp/$stub"
 fi
 report $stub
done

echo -------------------
echo Passed $pass Failed $fail
echo -------------------

That's all Folks
##

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

Test harness (in ../test)
add_custom_target(test COMMAND ../test/run.sh)
add_custom_target(tests COMMAND ../test/run.sh)

1
2
3

args.cpp

Bash

2020-Dec-6, 15:01IMaEA

Page 199 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

The purpose of this program is to analyse command-line arguments.

The purpose of this program is to “pretty print” csv files.

#include <stdio.h>
int main(int argc, char* argv[])
{
 int i = 1 ;
 while (i < argc) {
 printf("%-2d: %s\n",i,argv[i]) ;
 i++;
 }
 return 0 ;
}

1
2
3
4
5
6
7
8
9
10

csv.cpp

// http://www.zedwood.com/article/cpp-csv-parser
#include <string>
#include <vector>
#include <iostream>
#include <fstream>
#include <sstream>
#include <istream>

std::vector<std::string> read(std::istream &in, char delimiter)
{
 std::stringstream ss;
 bool inquotes = false;
 bool bEnd = false;
 char Q = '"' ; // quote character
 char L = '\n' ; // line-feed
 char C = '\r' ; // carriage-return

 std::vector<std::string> row;

 while(in.good() && !bEnd) {
 char c = in.get();
 if (!inquotes && c==Q) {
 inquotes=true;
 } else if (inquotes && c==Q) {
 if (in.peek() == Q) { //2 consecutive quotes resolve to 1
 ss << (char)in.get();
 } else { //endquotechar
 inquotes=false;
 }
 } else if (!inquotes && c==delimiter) { //end of field
 row.push_back(ss.str());
 ss.str("");
 } else if (!inquotes && (c==C || c==L)) {
 if(in.peek()==L) { in.get(); }
 row.push_back(ss.str());
 bEnd = true;
 } else {
 ss << c;
 }

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

C++

C++

2020-Dec-6, 15:01IMaEA

Page 200 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

The purpose of this program is to inspect files. It’s od on steroids.

 }
 }
 return row;
}

int main(int argc, char *argv[])
{
 if (argc != 2) {
 std::cerr << "usage: " << argv[0] << " { path | - }" << std::endl;
 return 1;
 }

 // open file and connect to std::cin
 std::string path(argv[1]);
 std::ifstream file(path);
 if (path != "-") {
 if (file.is_open()) {
 std::cin.rdbuf(file.rdbuf());
 } else if (argc > 1) {
 std::cerr << "file did not open: " << path << std::endl;
 return 2;
 }
 }

 // parse input line by line
 while(std::cin.good())
 {
 std::vector<std::string> row = read(std::cin , ',');
 for(int i=0, leng=row.size(); i<leng; i++)
 std::cout << "[" << row[i] << "]" << "\t";
 std::cout << std::endl;
 }

 file.close();
 return 0;
}

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

dmpf.cpp

// g++ --std=c++11 dmpf.cpp
#include <stdio.h>
#include <map>
#include <string.h>
#include <vector>
#include <string>
#include <cstring>
#include <iostream>
#include <sstream>

#ifdef _MSC_VER
#pragma warning(disable : 4996)
#endif

std::vector <std::string> paths;
std::string terminal("-");

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

C++

2020-Dec-6, 15:01IMaEA

Page 201 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

std::string terminal("-");
std::map<std::string,uint32_t> options;

static enum error_e
{ errorOK = 0
, errorSyntax
, errorProcessing
} error = errorOK ;

uint8_t print(uint8_t c) { return c >= 32 && c < 127 ? c : c==0 ? '_' : '.' ; }

void printOptions(error_e e)
{
 if (options["verbose"] || e == errorSyntax) {
 size_t count=0;
 for (auto option : options) {
 std::cout << (count++?" ":"") << option.first << "=" << option.second << ""
 }
 }
 std::cout << std::endl;
 error = e;
}

void syntax(int argc, char* argv[],error_e e)
{
 std::cout << "syntax: " << argv[0] << " [key=value]+ path+" << std::endl;
 printOptions(errorSyntax) ;
}

bool split(const char* arg,std::string& key,uint32_t& value)
{
 while (*arg == '-') arg++;
 const char* chop = std::strchr(arg,'=');
 if (chop) {
 key = std::string(arg,chop-arg);
 value = atoi(chop+1);
 }
 return chop != NULL;
}

// endian and byte swappers
bool isPlatformBigEndian()
{
 union { uint32_t i; char c[4]; } e = { 0x01000000 };
 return e.c[0]?true:false;
}

uint32_t platformEndian() { return isPlatformBigEndian() ? 1 : 0; }
void swap(void* from,void* to,size_t n)
{
 uint8_t* v = reinterpret_cast<uint8_t *>(from);
 uint8_t* swap = reinterpret_cast<uint8_t *>(to);
 for (size_t i = 0; i < n; i++) {
 swap[i] = v[n - i - 1];
 }
}
uint64_t swap(uint64_t* value,bool bSwap)

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

2020-Dec-6, 15:01IMaEA

Page 202 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

{
 uint64_t result = *value ;
 if (bSwap) swap(value,&result,sizeof result);
 return result;
}
uint32_t swap(uint32_t* value,bool bSwap)
{
 uint32_t result = *value ;
 if (bSwap) swap(value,&result,sizeof result);
 return result;
}
uint16_t swap(uint16_t* value,bool bSwap)
{
 uint16_t result = *value ;
 if (bSwap) swap(value,&result,sizeof result);
 return result;
}

std::vector<std::string> splitter (const std::string &s, char delim)
{
 std::vector<std::string> result;
 std::stringstream ss (s);
 std::string item;

 while (getline (ss, item, delim)) {
 result.push_back (item);
 }

 return result;
}

bool file(const char* arg,std::string& stub,uint32_t& skip)
{
 std::string path(arg);
 if (path == terminal) { stub = terminal ; return true ; }

 // parse path/to/file[:number+length]+
 std::vector<std::string> paths = ::splitter(path,':');
 for (size_t i = 1 ; i < paths.size() ; i++) {
 std::vector<std::string> numbers = splitter(paths[i],'+');
 skip += ::atoi(numbers[0].c_str());
 }
 FILE* f = ::fopen(paths[0].c_str(),"rb");
 bool result = f != NULL ;
 if (f) fclose(f);
 stub=paths[0];
 return result;
} //file

int main(int argc, char* argv[])
{
 options["bs"] = 1;
 options["width"] = 32;
 options["count"] = 0;
 options["endian"] = isPlatformBigEndian();
 options["hex"] = 1;
 options["skip"] = 0;

73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

2020-Dec-6, 15:01IMaEA

Page 203 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

 options["skip"] = 0;
 options["verbose"] = 0;
 options["start"] = 0; // set by file[:start->length]+

 // parse arguments
 if (argc < 2) {
 syntax(argc,argv,errorSyntax) ;
 } else for (int i = 1 ; i < argc ; i++) {
 const char* arg = argv[i];
 std::string key;
 std::string stub;
 uint32_t value ;
 bool bClaimed = false;
 if (split(argv[i],key,value)) {
 if (options.find(key) != options.end()) {
 options[key]+=value;
 bClaimed = true ;
 }
 } else if (file(arg,stub,options["start"])) {
 paths.push_back(stub);
 bClaimed = true;
 }
 if (!bClaimed) {
 std::cerr << "argument not understood: " << arg << std::endl;
 error = errorProcessing;
 }
 }

 // report arguments
 if (options["verbose"]) printOptions(error) ;

 // process
 if (!error) for (auto path : paths) {
 FILE* f = NULL ;
 size_t size = 1;
 size_t skip = options["skip"];
 size_t count = options["count"];
 size_t width = options["width"];
 size_t start = options["start"];

 std::cout << "path = " << path << std::endl;

 if (path != terminal) {
 f = fopen(path.c_str(),"rb");
 fseek(f,0,SEEK_END);
 size = ftell(f);
 } else {
 f = stdin ;
 size = 256*1024;
 }
 if (!count) count = size - skip-start;
 if (!f || (skip+count+start) > size) {
 std::cerr << path << " insufficient data" << std::endl;
 error = errorProcessing;
 }

 char line[1000] ;

129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185

2020-Dec-6, 15:01IMaEA

Page 204 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

 char line[1000] ;
 char buff[64] ;
 size_t reads = 0 ; // count the reads
 size_t nRead = 0 ; // bytes actually read
 size_t remain = count ; // how many bytes still to read
 if (width > sizeof buff) width = sizeof(buff);
 fseek(f,(long)skip+start,SEEK_SET);

 if (!error) while (remain && (nRead = fread(buff,1,remain>width?width:remain,
 // line number
 int l = sprintf(line,"%#8lx %8ld: ",(unsigned long)(skip+reads*width), (unsigned

 // ascii print
 for (int i = 0 ; i < nRead ; i++) {
 l += sprintf(line+l,"%c", print(buff[i])) ;
 }

 // blank pad the ascii
 size_t n = nRead ;
 while (n++ < width) {
 l += sprintf(line+l," ") ;
 }
 l += sprintf(line+l," -> ") ;

 size_t bs = options["bs"];
 switch (bs) {
 case 8 :
 for (size_t i = 0 ; i < nRead; i += bs) {
 uint64_t* p = (uint64_t*) &buff[i] ;
 uint64_t v = swap(p, options["endian"]!=platformEndian());
 l += options["hex"] ? sprintf(line+l," %16llx" ,(long long int)v)
 : sprintf(line+l," %20lld" ,(long long int)v)
 ;
 }
 break;
 case 4 :
 for (size_t i = 0 ; i < nRead ; i += bs) {
 uint32_t* p = (uint32_t*) &buff[i] ;
 uint32_t v = swap(p, options["endian"]!=platformEndian());
 l += options["hex"] ? sprintf(line+l," %8x" ,v)
 : sprintf(line+l," %10d" ,v)
 ;
 }
 break;
 case 2:
 for (size_t i = 0 ; i < nRead ; i += bs) {
 uint16_t* p = (uint16_t*) &buff[i] ;
 uint16_t v = swap(p, options["endian"]!=platformEndian());
 l += options["hex"] ? sprintf(line+l," %4x" ,v)
 : sprintf(line+l," %5d" ,v)
 ;
 }
 break;
 default:
 for (int i = 0 ; i < nRead ; i++) { // bs == 1
 uint8_t v = buff[i];
 l += options["hex"] ? sprintf(line+l," %02x" ,v)
 : sprintf(line+l," %3d" ,v)

185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242

2020-Dec-6, 15:01IMaEA

Page 205 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

TOC

 : sprintf(line+l," %3d" ,v)
 ;
 }
 }

 line[l] = 0 ;
 std::cout << line << std::endl;
 reads++;
 remain -= nRead;
 if (path == terminal) size += nRead;
 } // while remains && nRead

 if (f != stdin) {
 fclose(f);
 }
 f = NULL;
 }

 return error ;
} // main

242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261

2020-Dec-6, 15:01IMaEA

Page 206 of 206file:///Users/rmills/gnu/exiv2/team/book/IMaEA.html

I hope you found this book interesting. More to the point, I hope you found the book useful. I hope Exiv2 will
live into the future, or this book inspires somebody to write a new library.

I’m going off to cut the grass and to run in the beautiful countryside around my home in Camberley, England.
And I’m going to play the Euphonium and the Piano. If you have interesting and positive thoughts you are
welcome to open an issue on GitHub and I will respond. https://github.com/exiv2/exiv2

TOC

The Last Word

https://github.com/exiv2/exiv2

